Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 148, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240881

RESUMO

Transcription factor-based bioreporters have been extensively studied for monitoring and detecting environmental toxicants. In Escherichia coli, the multiple antibiotic resistance regulator (MarR) induces transcription upon binding to salicylic acid (SA). We generated SA-specific E. coli cell-based bioreporters utilizing the operator region of the mar operon and MarR as components of the reporter and sensing domains, respectively. Although bioreporters based on endogenous MarR and wild-type E. coli cells responded to SA, their sensitivity and selectivity were insufficient for practical sample monitoring. To improve these parameters, we genetically engineered host strains for optimal MarR expression, which enhanced the sensitivity of the biosensor to micromolar quantities of SA with increased selectivity. Under the optimized experimental conditions, the biosensor could quantify SA in environmental samples. For validation, the SA concentration in artificially contaminated SA-containing cosmetic samples was determined using the developed biosensor. Reliability assessment by comparing the concentrations determined using LC-MS/MS revealed > 90% accuracy of the bioreporters. Although bioreporters are not considered standard tools for environmental monitoring, bacterial cell-based bioreporters may serve as alternative tools owing to their affordability and simplicity. The SA biosensor developed in this study can potentially be a valuable tool for monitoring SA in environmental systems. KEY POINTS: • SA-responsive bioreporter is generated by employing mar operon system in E. coli • SA specificity and selectivity were enhanced by genetic/biochemical engineering • The novel bioreporter would be valuable for SA monitoring in environmental systems.


Assuntos
Escherichia coli , Ácido Salicílico , Escherichia coli/genética , Escherichia coli/metabolismo , Cromatografia Líquida , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem
2.
J Appl Microbiol ; 132(2): 1166-1175, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34469625

RESUMO

AIM: Chlorogenic acid and p-coumaroyl shikimate are hydroxycinnamic acid derivatives. These compounds are nutraceutical supplements due to their biological activities including prevention of cardiovascular disease and cancers. These two compounds were synthesized in Escherichia coli through two-culture system using two mutants, which are biochemically interdependent. The aim of this work was to improve the titres of their production in a single E. coli mutant in which all necessary genes were introduced. This was done by testing various shikimate gene combinations to determine the optimal gene combination for the synthesis of chlorogenic acid and p-coumaroyl shikimate. METHODS AND RESULTS: A series of gene modules harbouring shikimate pathway genes were constructs. Six gene module constructs for chlorogenic acid synthesis and eight constructs for p-coumaric acid synthesis were tested in order to find the best one. Chlorogenic acid synthesis showed highest with the gene module construct containing ydiB, aroB, aroGf , ppsA and tktA. Using the E. coli strain, 109.7 mg L-1 chlorogenic acid was synthesized. The best gene module construct for the p-coumaroyl shikimate synthesis contained aroD and aroGf . In addition, we used two E. coli deletion mutant strains (ΔaroK and ΔaroL) to increase the final titre. The E. coli ΔaroK mutant harbouring this gene module construct synthesized 713.4 mg L-1 of p-coumaroyl shikimate. CONCLUSION: The chlorogenic acid synthesis using the current system was approximately 35.4% higher of the titre than titres obtained with an alternative method that depends on co-cultivation of two mutants. At the same time, production of p-coumaroyl shikimate increased 5.8 times. SIGNIFICANCE AND IMPACT OF THE STUDY: The current study's findings indicate that our selection of the shikimate gene module contributed to increases in the levels of the substrates and could be applied to synthesize other compounds whose synthesis requires intermediates of the shikimate pathway.


Assuntos
Ácido Clorogênico , Escherichia coli , Escherichia coli/genética , Redes Reguladoras de Genes , Engenharia Metabólica
3.
Microb Cell Fact ; 19(1): 73, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32197639

RESUMO

BACKGROUND: Acridone alkaloids are heterocyclic compounds that exhibit a broad-range of pharmaceutical and chemotherapeutic activities, including anticancer, antiviral, anti-inflammatory, antimalarial, and antimicrobial effects. Certain plant species such as Citrus microcarpa, Ruta graveolens, and Toddaliopsis bremekampii synthesize acridone alkaloids from anthranilate and malonyl-CoA. RESULTS: We synthesized two acridones in Escherichia coli. Acridone synthase (ACS) and anthraniloyl-CoA ligase genes were transformed into E. coli, and the synthesis of acridone was examined. To increase the levels of endogenous anthranilate, we tested several constructs expressing proteins involved in the shikimate pathway and selected the best construct. To boost the supply of malonyl-CoA, genes coding for acetyl-coenzyme A carboxylase (ACC) from Photorhabdus luminescens were overexpressed in E. coli. For the synthesis of 1,3-dihydroxy-10-methylacridone, we utilized an N-methyltransferase gene (NMT) to supply N-methylanthranilate and a new N-methylanthraniloyl-CoA ligase. After selecting the best combination of genes, approximately 17.3 mg/L of 1,3-dihydroxy-9(10H)-acridone (DHA) and 26.0 mg/L of 1,3-dihydroxy-10-methylacridone (NMA) were synthesized. CONCLUSIONS: Two bioactive acridone derivatives were synthesized by expressing type III plant polyketide synthases and other genes in E. coli, which increased the supplement of substrates. This study showed that is possible to synthesize diverse polyketides in E. coli using plant polyketide synthases.


Assuntos
Acridonas/metabolismo , Escherichia coli , Aciltransferases/genética , Proteínas de Bactérias/genética , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Microrganismos Geneticamente Modificados/metabolismo , Photorhabdus/enzimologia , Proteínas de Plantas/genética , Policetídeo Sintases/genética , Proteínas Recombinantes/genética
4.
Appl Microbiol Biotechnol ; 104(6): 2691-2699, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32002600

RESUMO

Despite the known hazardous effects of antimony (Sb) on human health, Sb monitoring biosensors have not been as actively investigated as arsenic (As) biosensors. Whole-cell bioreporters (WCBs) employing an arsenic-responsive operon and a regulatory protein (ArsR) are reportedly capable of monitoring arsenite, arsenate, and antimonite. However, the potential of WCBs as Sb biosensors has been largely ignored. Here, the metal-binding site of ArsR (sequenced as ELCVCDLCTA from amino acid number 30 to 39) was modified via genetic engineering to enhance Sb specificity. By relocating cysteine residues and introducing point mutations, nine ArsR mutants were generated and tested for metal(loid) ion specificity. The Sb specificity of WCBs was enhanced by the C37S/A39C and L36C/C37S mutations on the As binding site of ArsR. Additionally, WCBs with other ArsR mutants exhibited new target sensing capabilities toward Cd and Pb. Although further research is required to enhance the specificity and sensitivity of WCBs and to broaden their practical applications, our proposed strategy based on genetic engineering of regulatory proteins provides a valuable basis to generate WCBs to monitor novel targets.


Assuntos
Antimônio/análise , Técnicas Biossensoriais/métodos , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Engenharia Genética/métodos , Transativadores/genética , Arseniatos/análise , Arsenitos/análise , Sítios de Ligação , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Óperon , Mutação Puntual
5.
Microb Cell Fact ; 17(1): 46, 2018 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-29566686

RESUMO

BACKGROUND: Hydroxycinnamoyl anthranilates, also known as avenanthramides (avns), are a group of phenolic alkaloids with anti-inflammatory, antioxidant, anti-itch, anti-irritant, and antiatherogenic activities. Some avenanthramides (avn A-H and avn K) are conjugates of hydroxycinnamic acids (HC), including p-coumaric acid, caffeic acid, and ferulic acid, and anthranilate derivatives, including anthranilate, 4-hydroxyanthranilate, and 5-hydroxyanthranilate. Avns are primarily found in oat grain, in which they were originally designated as phytoalexins. Knowledge of the avns biosynthesis pathway has now made it possible to synthesize avns through a genetic engineering strategy, which would help to further elucidate their properties and exploit their beneficial biological activities. The aim of the present study was to synthesize natural avns in Escherichia coli to serve as a valuable resource. RESULTS: We synthesized nine avns in E. coli. We first synthesized avn D from glucose in E. coli harboring tyrosine ammonia lyase (TAL), 4-coumarate:coenzyme A ligase (4CL), anthranilate N-hydroxycinnamoyl/benzoyltransferase (HCBT), and anthranilate synthase (trpEG). A trpD deletion mutant was used to increase the amount of anthranilate in E. coli. After optimizing the incubation temperature and cell density, approximately 317.2 mg/L of avn D was synthesized. Avn E and avn F were then synthesized from avn D, using either E. coli harboring HpaBC and SOMT9 or E. coli harboring HapBC alone, respectively. Avn A and avn G were synthesized by feeding 5-hydroxyanthranilate or 4-hydroxyanthranilate to E. coli harboring TAL, 4CL, and HCBT. Avn B, avn C, avn H, and avn K were synthesized from avn A or avn G, using the same approach employed for the synthesis of avn E and avn F from avn D. CONCLUSIONS: Using different HCs, nine avns were synthesized, three of which (avn D, avn E, and avn F) were synthesized from glucose in E. coli. These diverse avns provide a strategy to synthesize both natural and unnatural avns, setting a foundation for exploring the biological activities of diverse avns.


Assuntos
Escherichia coli/química , Engenharia Metabólica/métodos , ortoaminobenzoatos/síntese química , ortoaminobenzoatos/química
6.
Appl Microbiol Biotechnol ; 102(11): 4863-4872, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29627854

RESUMO

Despite the large number of bioreporters developed to date, the ability to detect heavy metal(loid)s with bioreporters has thus far been limited owing to the lack of appropriate genetic systems. We here present a novel approach to modulate the selectivity and sensitivity of microbial whole-cell bioreporters (WCBs) for sensing metal(loid)s via the znt-operon from Escherichia coli, which were applied to quantify the bioavailability of these contaminants in environmental samples. The WCB harboring the fusion gene zntAp::egfp was used as a microbial metal(loid) sensor, which was turned on by the interaction between ZntR and metal(loid) ions. This design makes it possible to modulate the selectivity and sensitivity to metal(loid)s simply by changing the metal-binding property of ZntR and by disrupting the metal efflux system of E. coli, respectively. In fact, the E. coli cell-based bioreporter harboring zntAp::egfp showed multi-target responses to Cd(II), Hg(II), and Zn(II). However, the WCBs showed responses toward only Cd(II) and Hg(II) when the amino acid sequence of the metal-binding loop of ZntR was changed to CNHEPGTVCPIC and CPGDDSADC, respectively. Moreover, the sensitivity toward both Cd(II) and Hg(II) was enhanced when copA, which is known to export copper and silver, was deleted. Thus, our findings provide a strong foundation for expanding the target of WCBs from the currently limited number of genetic systems available.


Assuntos
Técnicas Biossensoriais/métodos , Cádmio/análise , Monitoramento Ambiental/métodos , Mercúrio/análise , Disponibilidade Biológica , Escherichia coli/genética , Escherichia coli/metabolismo
7.
Appl Microbiol Biotechnol ; 102(3): 1513-1521, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29243083

RESUMO

Metals are essential to all organisms; accordingly, cells employ numerous genes to maintain metal homeostasis as high levels can be toxic. In the present study, the gene operons responsive to metal(loid)s were employed to generate bacterial cell-based biosensors to detect target metal(loid)s. The cluster of genes related to copper transport known as the cop-operon is regulated by the interaction between the copA promoter region (copAp) and CueR, turning on and off gene expression upon copper ion binding. Therefore, the detection of copper ions could be achieved by inserting a plasmid harboring the fusion of copAp and reporter genes, such as enzymes and fluorescent genes. However, copAp is not as strong a promoter as other metal-inducible promoters, such as znt-, mer-, and ars-operons; thereby, its sensitivity toward copper ions was not sufficient for quantification. To overcome this problem, we engineered Escherichia coli with a deletion of copA to interfere with copper export from cells. The engineered E. coli whole-cell bioreporter was able to detect copper ions at 0 to 10 µM in an aqueous solution. Most importantly, it was specific to copper among several tested heavy metal(loid)s. Therefore, it will likely be useful to detect copper in diverse environmental systems. Although additional improvements are still required to optimize the E. coli-based copper-sensing whole-cell bioreporters presented in this study, our results suggest that there is huge potential to generate whole-cell bioreporters for additional targets by molecular engineering.


Assuntos
Proteínas de Bactérias/genética , Cobre/metabolismo , Escherichia coli/genética , Engenharia Genética , Óperon , Técnicas Biossensoriais/métodos , Regulação Bacteriana da Expressão Gênica , Metais Pesados/metabolismo , Plasmídeos , Regiões Promotoras Genéticas
8.
Bioorg Med Chem Lett ; 27(3): 420-426, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28049590

RESUMO

Many membrane-associated proteins are involved in various signaling pathways, including the phosphoinositide 3-kinase (PI3K) pathway, which has key roles in diverse cellular processes. Disruption of the activities of these proteins is involved in the development of disease in humans, making these proteins promising targets for drug development. In most cases, the catalytic domain is targeted; however, it is also possible to target membrane associations in order to regulate protein activity. In this study, we established a novel method to study protein-lipid interactions and screened for flavonoid-derived antagonists of PtdIns(3,4,5)P3 binding with the phosphoinositide-dependent kinase 1 (PDK1) pleckstrin homology (PH) domain. Using an enhanced green fluorescent protein (eGFP)-tagged PDK1 PH domain and 50% sucrose-loaded liposomes, the protein-lipid interaction could be efficiently evaluated using liposome pull-down assays coupled with fluorescence spectrophotometry, and a total of 32 flavonoids were screened as antagonists for PtdIns(3,4,5)P3 binding with the PDK1 PH domain. From this analysis, we found that two adjunct hydroxyl groups in the C ring were responsible for the inhibitory effects of the flavonoids. Because the flavonoids shared structural similarities, the results were then subjected to quantitative structure-activity relationship (QSAR) analysis. The results were then further confirmed by in silico docking experiments. Taken together, our strategy presented herein to screen antagonists targeting lipid-protein interactions could be an alternative method for identification and characterization of drug candidates.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Flavonoides/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/antagonistas & inibidores , Sítios de Ligação , Flavonas/química , Flavonas/metabolismo , Flavonoides/química , Flavonóis , Lipossomos/química , Lipossomos/metabolismo , Simulação de Acoplamento Molecular , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Domínios de Homologia à Plecstrina , Ligação Proteica , Relação Quantitativa Estrutura-Atividade
9.
J Ind Microbiol Biotechnol ; 44(11): 1551-1560, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28819877

RESUMO

Plants synthesize various phenol amides. Among them, hydroxycinnamoyl (HC) tryptamines and serotonins exhibit antioxidant, anti-inflammatory, and anti-atherogenic activities. We synthesized HC-tryptamines and HC-serotonin from several HCs and either tryptamine or serotonin using Escherichia coli harboring the 4CL (4-coumaroyl CoA ligase) and CaHCTT [hydroxycinnamoyl-coenzyme A:serotonin N-(hydroxycinnamoyl)transferase] genes. E. coli was engineered to synthesize N-cinnamoyl tryptamine from glucose. TDC (tryptophan decarboxylase) and PAL (phenylalanine ammonia lyase) along with 4CL and CaHCTT were introduced into E. coli and the phenylalanine biosynthetic pathway of E. coli was engineered. Using this strategy, approximately 110.6 mg/L of N-cinnamoyl tryptamine was synthesized. By feeding 100 µM serotonin into the E. coli culture, which could induce the synthesis of cinnamic acid or p-coumaric acid, more than 99 µM of N-cinnamoyl serotonin and N-(p-coumaroyl) serotonin were synthesized.


Assuntos
Escherichia coli/genética , Microrganismos Geneticamente Modificados , Serotonina/biossíntese , Triptaminas/biossíntese , Descarboxilases de Aminoácido-L-Aromático/genética , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Bacillus/enzimologia , Bacillus/genética , Vias Biossintéticas , Catharanthus/enzimologia , Catharanthus/genética , Cinamatos/metabolismo , Clonagem Molecular , Ácidos Cumáricos/metabolismo , Escherichia coli/metabolismo , Fenilalanina , Fenilalanina Amônia-Liase/metabolismo
10.
Microb Cell Fact ; 15(1): 182, 2016 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-27776529

RESUMO

BACKGROUND: Nucleotide sugars serve as sugar donors for the synthesis of various glycones. The biological and chemical properties of glycones can be altered depending which sugar is attached. Bacteria synthesize unusual nucleotide sugars. A novel nucleotide sugar can be synthesized in Escherichia coli by introducing nucleotide biosynthetic genes from other microorganisms into E. coli. The engineered E. coli strains can be used as a platform for the synthesis of novel glycones. RESULTS: Four genes, Pdeg (UDP-N-acetylglucosamine C4,6-dehydratase), Preq (UDP-4-reductase), UDP-GlcNAc 6-DH (UDP-N-acetylglucosamine 6-dehydrogenase), and UXNAcS (UDP-N-acetylxylosamine synthase), were employed to synthesize UDP-quinovosamine, UDP-N-acetylglucosaminuronic acid, and UDP-N-acetylxylosamine in E. coli. We engineered an E. coli nucleotide sugar biosynthetic pathway to increase the pool of substrate for the target nucleotide sugars. Uridine diphosphate dependent glycosyltransferase (UGT) was also selected and introduced into E. coli. Using engineered E. coli, high levels of three novel flavonoid glycosides were obtained; 158.3 mg/L quercetin 3-O-(N-acetyl)quinovosamine, 172.5 mg/L luteolin 7-O-(N-acetyl)glucosaminuronic acid, and 160.8 mg/L quercetin 3-O-(N-acetyl)xylosamine. CONCLUSIONS: We reconstructed an E. coli nucleotide pathway for the synthesis of UDP-quinovosamine, UDP-N-acetylglucosaminuronic acid and UDP-N-acetylxylosamine in an E. coli galU (UDP-glucose 1-phosphate uridylyltransferase) or pgm (phosphoglucomutase) deletion mutant. Using engineered E. coli strains harboring a specific UGT, three novel flavonoids glycones were synthesized. The E. coli strains used in this study can be used for the synthesis of diverse glycones.


Assuntos
Amino Açúcares/biossíntese , Escherichia coli/metabolismo , Flavonoides/biossíntese , Escherichia coli/enzimologia , Escherichia coli/genética , Engenharia Metabólica/métodos
11.
J Ind Microbiol Biotechnol ; 43(6): 841-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26931782

RESUMO

Various flavonoid glycosides are found in nature, and their biological activities are as variable as their number. In some cases, the sugar moiety attached to the flavonoid modulates its biological activities. Flavonoid glycones are not easily synthesized chemically. Therefore, in this study, we attempted to synthesize quercetin 3-O-glucosyl (1→2) xyloside and quercetin 3-O-glucosyl (1→6) rhamnoside (also called rutin) using two uridine diphosphate-dependent glycosyltransferases (UGTs) in Escherichia coli. To synthesize quercetin 3-O-glucosyl (1→2) xyloside, sequential glycosylation was carried out by regulating the expression time of the two UGTs. AtUGT78D2 was subcloned into a vector controlled by a Tac promoter without a lacI operator, while AtUGT79B1 was subcloned into a vector controlled by a T7 promoter. UDP-xyloside was supplied by concomitantly expressing UDP-glucose dehydrogenase (ugd) and UDP-xyloside synthase (UXS) in the E. coli. Using these strategies, 65.0 mg/L of quercetin 3-O-glucosyl (1→2) xyloside was produced. For the synthesis of rutin, one UGT (BcGT1) was integrated into the E. coli chromosome and the other UGT (Fg2) was expressed in a plasmid along with RHM2 (rhamnose synthase gene 2). After optimization of the initial cell concentration and incubation temperature, 119.8 mg/L of rutin was produced. The strategies used in this study thus show promise for the synthesis of flavonoid diglucosides in E. coli.


Assuntos
Proteínas de Bactérias/metabolismo , Escherichia coli/enzimologia , Glicosídeos/biossíntese , Quercetina/biossíntese , Proteínas de Bactérias/genética , Escherichia coli/genética , Flavonoides/biossíntese , Glicosilação , Glicosiltransferases/metabolismo , Plasmídeos
12.
Microb Cell Fact ; 14: 162, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26463041

RESUMO

BACKGROUND: Hydroxycinnamic acids (HCAs) including cinnamic acid, p-coumaric acid, caffeic acid, and ferulic acid, are C6-C3 phenolic compounds that are synthesized via the phenylpropanoid pathway. HCAs serve as precursors for the synthesis of lignins, flavonoids, anthocyanins, stilbenes and other phenolic compounds. HCAs can also be conjugated with diverse compounds including quinic acid, hydroxyl acids, and amines. Hydroxycinnamoyl (HC) amine conjugates such as N-HC tyramines and N-HC phenethylamines have been considered as potential starting materials to develop antiviral and anticancer drugs. RESULTS: We synthesized N-HC tyramines and N-HC phenethylamines using three different approaches in Escherichia coli. Five N-HC phenethylamines and eight N-HC tyramines were synthesized by feeding HCAs and phenethylamine or tyramine to E. coli harboring 4CL (encoding 4-coumarate CoA:ligase) and either SHT (encoding phenethylamine N-HC transferase) or THT (encoding tyramine N-HC transferase). Also, N-(p-coumaroyl) phenethylamine and N-(p-coumaroyl) tyramine were synthesized from p-coumaric acid using E. coli harboring an additional gene, PDC (encoding phenylalanine decarboxylase) or TDC (encoding tyrosine decarboxylase). Finally, we synthesized N-(p-coumaroyl) phenethylamine and N-(p-coumaroyl) tyramine from glucose by reconstructing the metabolic pathways for their synthesis in E. coli. Productivity was maximized by optimizing the cell concentration and incubation temperature. CONCLUSIONS: We reconstructed the metabolic pathways for synthesis of N-HC tyramines and N-HC phenethylamines by expressing several genes including 4CL, TST or SHT, PDC or TDC, and TAL (encoding tyrosine ammonia lyase) and engineering the shikimate metabolic pathway to increase endogenous tyrosine concentration in E. coli. Approximately 101.9 mg/L N-(p-coumaroyl) phenethylamine and 495.4 mg/L N-(p-coumaroyl) tyramine were synthesized from p-coumaric acid. Furthermore, 152.5 mg/L N-(p-coumaroyl) phenethylamine and 94.7 mg/L N-(p-coumaroyl) tyramine were synthesized from glucose.


Assuntos
Ácidos Cumáricos/metabolismo , Fenetilaminas/metabolismo , Tiramina/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Ácidos Cumáricos/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Espectrometria de Massas , Engenharia Metabólica , Fenetilaminas/química , Plasmídeos/genética , Plasmídeos/metabolismo , Transferases/genética , Transferases/metabolismo , Tiramina/química
13.
Microb Cell Fact ; 14: 65, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25927349

RESUMO

BACKGROUND: Coumarins are a major group of plant secondary metabolites that serves as defense compounds against pathogens. Although coumarins can be obtained from diverse plant sources, the use of microorganisms to synthesize them could be an alternative way to supply building blocks for the synthesis of diverse coumarin derivatives. RESULTS: Constructs harboring two genes, F6'H (encoding feruloyl CoA 6' hydroxylase) and 4CL (encoding 4-coumarate CoA:ligase), were manipulated to increase the productivity of coumarins. Escherichia coli expressing the two genes was cultured in medium supplemented with hydroxycinnamic acids (HCs) including p-coumaric acid, caffeic acid, and ferulic acid, resulting in the synthesis of the corresponding coumarins, umbelliferone, esculetin, and scopoletin. Cell concentration and initial substrate feeding concentration were optimized. In addition, umbelliferone, and esculetin were synthesized from glucose by using a ybgC deletion mutant and co-expressing tyrosine ammonia lyase and other genes involved in the tyrosine biosynthesis pathway. CONCLUSIONS: To produce coumarin derivatives (umbelliferone, scopoletin, and esculetin) in E. coli, several constructs containing F6'H and 4CL were made, and their ability to synthesize coumarin derivatives was tested. The solubility of F6'H was critical for the final yield. After optimization, 82.9 mg/L of umbelliferone, 79.5 mg/L of scopoletin, and 52.3 mg/L of esculetin were biosynthesized from the corresponding HCs, respectively in E. coli. Umbelliferone and esculetin were also synthesized from glucose using engineered E. coli strains. The final yields of umbelliferone and esculetin were 66.1 and 61.4 mg/L, respectively.


Assuntos
Ácidos Cumáricos/metabolismo , Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Cumarínicos
14.
Appl Microbiol Biotechnol ; 99(5): 2233-42, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25515812

RESUMO

Most flavonoids are glycosylated and the nature of the attached sugar can strongly affect their physiological properties. Although many flavonoid glycosides have been synthesized in Escherichia coli, most of them are glucosylated. In order to synthesize flavonoids attached to alternate sugars such as glucuronic acid and galactoside, E. coli was genetically modified to express a uridine diphosphate (UDP)-dependent glycosyltransferase (UGT) specific for UDP-glucuronic acid (AmUGT10 from Antirrhinum majus or VvUGT from Vitis vinifera) and UDP-galactoside (PhUGT from Petunia hybrid) along with the appropriate nucleotide biosynthetic genes to enable simultaneous production of their substrates, UDP-glucuronic acid and UDP-galactose. To engineer UDP-glucuronic acid biosynthesis, the araA gene encoding UDP-4-deoxy-4-formamido-L-arabinose formyltransferase/UDP-glucuronic acid C-4″ decarboxylase, which also used UDP-glucuronic acid as a substrate, was deleted in E. coli, and UDP-glucose dehydrogenase (ugd) gene was overexpressed to increase biosynthesis of UDP-glucuronic acid. Using these strategies, luteolin-7-O-glucuronide and quercetin-3-O-glucuronide were biosynthesized to levels of 300 and 687 mg/L, respectively. For the synthesis of quercetin 3-O-galactoside, UGE (encoding UDP-glucose epimerase from Oryza sativa) was overexpressed along with a glycosyltransferase specific for quercetin and UDP-galactose. Using this approach, quercetin 3-O-galactoside was successfully synthesized to a level of 280 mg/L.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Flavonoides/metabolismo , Galactosídeos/metabolismo , Glucuronídeos/metabolismo , Engenharia Metabólica , Antirrhinum/enzimologia , Antirrhinum/genética , Deleção de Genes , Expressão Gênica , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Oryza/enzimologia , Oryza/genética , Petunia/enzimologia , Petunia/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vitis/enzimologia , Vitis/genética
15.
Appl Microbiol Biotechnol ; 99(7): 2979-88, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25750049

RESUMO

Flavonoids are plant secondary metabolites containing several hydroxyl groups that are targets for modification reactions such as methylation and glycosylation. In plants, flavonoids are present as glycones. Although glucose is the most common sugar attached to flavonoids, arabinose, galactose, glucuronic acid, rhamnose, and xylose are also linked to flavonoids. Depending on the kind and the position of the attached sugar, flavonoid glycones show different biological properties. Flavonoid-O-glycosides are synthesized by uridine diphosphate-dependent glycosyltransferases (UGTs), which use nucleotide sugar as a sugar donor and a diverse compound as a sugar acceptor. Recently, diverse flavonoid-O-glycosides have been synthesized in Escherichia coli by introducing UGTs from plants and bacteria and modifying endogenous pathways. The nucleotide sugar biosynthesis pathway in E. coli has been engineered to provide the proper nucleotide sugar for flavonoid-O-glycoside biosynthesis. In this review, we will discuss recent advances in flavonoid-O-glycoside biosynthesis using engineered E. coli.


Assuntos
Escherichia coli/metabolismo , Flavonoides/metabolismo , Engenharia Metabólica/métodos , Escherichia coli/genética , Flavonoides/biossíntese , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Glicosilação
16.
Appl Environ Microbiol ; 80(9): 2754-62, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24561591

RESUMO

Plants produce two flavonoid O-pentoses, flavonoid O-xyloside and flavonoid O-arabinoside. However, analyzing their biological properties is difficult because flavonoids are not naturally produced in sufficient quantities. In this study, Escherichia coli was used to synthesize the plant-specific flavonoid O-pentosides quercetin 3-O-xyloside and quercetin 3-O-arabinoside. Two strategies were used. First, E. coli was engineered to express components of the biosynthetic pathways for UDP-xylose and UDP-arabinose. For UDP-xylose biosynthesis, two genes, UXS (UDP-xylose synthase) from Arabidopsis thaliana and ugd (UDP-glucose dehydrogenase) from E. coli, were overexpressed. In addition, the gene encoding ArnA (UDP-l-Ara4N formyltransferase/UDP-GlcA C-4″-decarboxylase), which competes with UXS for UDP-glucuronic acid, was deleted. For UDP-arabinose biosynthesis, UXE (UDP-xylose epimerase) was overexpressed. Next, we engineered UDP-dependent glycosyltransferases (UGTs) to ensure specificity for UDP-xylose and UDP-arabinose. The E. coli strains thus obtained synthesized approximately 160 mg/liter of quercetin 3-O-xyloside and quercetin 3-O-arabinoside.


Assuntos
Arabinose/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Flavonoides/metabolismo , Engenharia Metabólica , Xilose/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Vias Biossintéticas , Carboxiliases/genética , Carboxiliases/metabolismo , Flavonoides/química , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Uridina Difosfato Glucose Desidrogenase/genética , Uridina Difosfato Glucose Desidrogenase/metabolismo , Açúcares de Uridina Difosfato/metabolismo
17.
J Ind Microbiol Biotechnol ; 41(8): 1311-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24879482

RESUMO

Flavonoids are ubiquitous phenolic compounds and at least 9,000 have been isolated from plants. Most flavonoids have been isolated and assessed in terms of their biological activities. Microorganisms such as Escherichia coli and Saccharomyces cerevisiae are efficient systems for the synthesis of flavonoids. Kaempferol 3-O-rhamnoside has notable biological activities such as the inhibition of the proliferation of breast cancer cells, the absorption of glucose in the intestines, and the inhibition of the self-assembly of beta amyloids. We attempted to synthesize kaempferol 3-O-rhamnoside from glucose in E. coli. Five flavonoid biosynthetic genes [tyrosine ammonia lyase (TAL), 4-coumaroyl CoA ligase (4CL), chalcone synthase (CHS), flavonol synthase (FLS), and flavonol 3-O-rhamnosyltransferase (UGT78D1)] from tyrosine were introduced into E. coli that was engineered to increase tyrosine production. By using this approach, the production of kaempferol 3-O-rhamnoside increased to 57 mg/L.


Assuntos
Escherichia coli/metabolismo , Glucose/metabolismo , Glicosídeos/biossíntese , Quempferóis/biossíntese , Tirosina/biossíntese , Aciltransferases , Primers do DNA/genética , Escherichia coli/genética , Flavonoides , Flavonóis , Técnicas de Transferência de Genes , Engenharia Genética/métodos , Microbiologia Industrial/métodos , Oxirredutases , Proteínas de Plantas , Plasmídeos/genética
18.
Planta ; 238(4): 683-93, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23801300

RESUMO

Flavonoids are predominantly found as glycosides in plants. The glycosylation of flavonoids is mediated by uridine diphosphate-dependent glycosyltransferases (UGT). UGTs attach various sugars, including arabinose, glucose, galactose, xylose, and glucuronic acid, to flavonoid aglycones. Two UGTs isolated from Arabidopsis thaliana, AtUGT78D2 and AtUGT78D3, showed 89 % amino acid sequence similarity (75 % amino acid sequence identity) and both attached a sugar to the 3-hydroxyl group of flavonols using a UDP-sugar. The two enzymes used UDP-glucose and UDP-arabinose, respectively, and AtUGT78D2 was approximately 90-fold more efficient than AtUGT78D3 when judged by the k(cat)/K(m) value. Domain exchanges between AtUGT78D2 and AtUGT78D3 were carried out to find UGTs with better catalytic efficiency for UDP-arabinose and exhibiting dual sugar selectivity. Among 19 fusion proteins examined, three showed dual sugar selectivity, and one fusion protein had better catalytic efficiency for UDP-arabinose compared with AtUGT78D3. Using molecular modeling, the changes in enzymatic properties in the chimeric proteins were elucidated. To the best of our knowledge, this is the first report on the construction of fusion proteins with expanded sugar-donor range and enhanced catalytic efficiencies for sugar donors.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Glicosiltransferases/genética , Uridina Difosfato Glucose/metabolismo , Açúcares de Uridina Difosfato/metabolismo , Sequência de Aminoácidos , Domínio Catalítico/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Recombinantes de Fusão/genética , Especificidade por Substrato/genética , Uridina Difosfato Glucose/genética , Açúcares de Uridina Difosfato/genética
19.
Microb Cell Fact ; 12: 15, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23383718

RESUMO

BACKGROUND: Hydroxycinnamates (HCs) are mainly produced in plants. Caffeic acid (CA), p-coumaric acid (PA), ferulic acid (FA) and sinapic acid (SA) are members of the HC family. The consumption of HC by human might prevent cardiovascular disease and some types of cancer. The solubility of HCs is increased through thioester conjugation to various compounds such as quinic acid, shikimic acid, malic acid, anthranilic acid, and glycerol. Although hydroxycinnamate conjugates can be obtained from diverse plant sources such as coffee, tomato, potato, apple, and sweet potato, some parts of the world have limited availability to these compounds. Thus, there is growing interest in producing HC conjugates as nutraceutical supplements. RESULTS: Hydroxycinnamoyl transferases (HCTs) including hydroxycinnamate-CoA shikimate transferase (HST) and hydroxycinnamate-CoA quinate transferase (HQT) were co-expressed with 4-coumarateCoA:ligase (4CL) in Escherichia coli cultured in media supplemented with HCs. Two hydroxycinnamoyl conjugates, p-coumaroyl shikimates and chlorogenic acid, were thereby synthesized. Total 29.1 mg/L of four different p-coumaroyl shikimates (3-p-coumaroyl shikimate, 4-p-coumaroyl shikimate, 3,4-di-p-coumaroyl shikimate, 3,5-di-p-coumaroyl shikimate, and 4,5-di-p-coumaroyl shikimate) was obtained and 16 mg/L of chlorogenic acid was synthesized in the wild type E. coli strain. To increase the concentration of endogenous acceptor substrates such as shikimate and quinate, the shikimate pathway in E. coli was engineered. A E. coli aroL and aroK gene were mutated and the resulting mutants were used for the production of p-coumaroyl shikimate. An E. coli aroD mutant was used for the production of chlorogenic acid. We also optimized the vector and cell concentration optimization. CONCLUSIONS: To produce p-coumaroyl-shikimates and chlorogenic acid in E. coli, several E. coli mutants (an aroD mutant for chlorogenic acid production; an aroL, aroK, and aroKL mutant for p-coumaroyl-shikimates production) were made and each mutant was tested using an optimized construct. Using this strategy, we produced 235 mg/L of p-coumaroyl-shikimates and 450 mg/L of chlorogenic acid.


Assuntos
Ácido Clorogênico/metabolismo , Ácidos Cumáricos/metabolismo , Escherichia coli/metabolismo , Ácido Chiquímico/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Engenharia Metabólica , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ácido Quínico/metabolismo , Ácido Chiquímico/análogos & derivados , Transferases/genética , Transferases/metabolismo
20.
Bioorg Med Chem ; 21(24): 7890-7, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24169316

RESUMO

Structure-activity relationship (SAR) calculations were used to find monoamine oxidase-B (MAO-B) inhibitors by identifying pharmacophores exhibiting high inhibitory activities. Several such chromenylchalcones were designed and synthesized accordingly. Their inhibitory effects on MAO-B were determined using an HPLC-based method and an MAO-B enzyme assay kit. (E)-3-(6-Methoxy-2H-chromen-3-yl)-1-(2-methoxyphenyl)prop-2-en-1-one exhibited a half-maximal inhibitory concentration of 320 nM. Its molecular-level binding mode with the three-dimensional structure of MAO-B was elucidated using an in silico docking study. The chromenylchalcone scaffold, which is derived from natural products including isoflavonoids and chalcones, had not been previously reported as an MAO-B inhibitor.


Assuntos
Benzopiranos/farmacologia , Chalconas/farmacologia , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Benzopiranos/química , Chalconas/química , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Monoaminoxidase/química , Inibidores da Monoaminoxidase/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA