Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecol Lett ; 26 Suppl 1: S62-S80, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37840022

RESUMO

Gene drive technology, in which fast-spreading engineered drive alleles are introduced into wild populations, represents a promising new tool in the fight against vector-borne diseases, agricultural pests and invasive species. Due to the risks involved, gene drives have so far only been tested in laboratory settings while their population-level behaviour is mainly studied using mathematical and computational models. The spread of a gene drive is a rapid evolutionary process that occurs over timescales similar to many ecological processes. This can potentially generate strong eco-evolutionary feedback that could profoundly affect the dynamics and outcome of a gene drive release. We, therefore, argue for the importance of incorporating ecological features into gene drive models. We describe the key ecological features that could affect gene drive behaviour, such as population structure, life-history, environmental variation and mode of selection. We review previous gene drive modelling efforts and identify areas where further research is needed. As gene drive technology approaches the level of field experimentation, it is crucial to evaluate gene drive dynamics, potential outcomes, and risks realistically by including ecological processes.


Assuntos
Tecnologia de Impulso Genético , Evolução Biológica , Alelos , Retroalimentação , Dinâmica Populacional
2.
Mol Ecol ; 30(4): 1086-1101, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33404162

RESUMO

Rapid evolutionary processes can produce drastically different outcomes when studied in panmictic population models vs. spatial models. One such process is gene drive, which describes the spread of "selfish" genetic elements through a population. Engineered gene drives are being considered for the suppression of disease vectors or invasive species. While laboratory experiments and modelling in panmictic populations have shown that such drives can rapidly eliminate a population, it remains unclear if these results translate to natural environments where individuals inhabit a continuous landscape. Using spatially explicit simulations, we show that the release of a suppression drive can result in what we term "chasing" dynamics, in which wild-type individuals recolonize areas where the drive has locally eliminated the population. Despite the drive subsequently reconquering these areas, complete population suppression often fails to occur or is substantially delayed. This increases the likelihood that the drive is lost or that resistance evolves. We analyse how chasing dynamics are influenced by the type of drive, its efficiency, fitness costs, and ecological factors such as the maximal growth rate of the population and levels of dispersal and inbreeding. We find that chasing is more common for lower efficiency drives when dispersal is low and that some drive mechanisms are substantially more prone to chasing behaviour than others. Our results demonstrate that the population dynamics of suppression gene drives are determined by a complex interplay of genetic and ecological factors, highlighting the need for realistic spatial modelling to predict the outcome of drive releases in natural populations.


Assuntos
Tecnologia de Impulso Genético , Alelos , Vetores de Doenças , Humanos , Modelos Genéticos , Dinâmica Populacional
3.
BMC Biol ; 18(1): 27, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32164660

RESUMO

BACKGROUND: CRISPR gene drive systems allow the rapid spread of a genetic construct throughout a population. Such systems promise novel strategies for the management of vector-borne diseases and invasive species by suppressing a target population or modifying it with a desired trait. However, current homing-type drives have two potential shortcomings. First, they can be thwarted by the rapid evolution of resistance. Second, they lack any mechanism for confinement to a specific target population. In this study, we conduct a comprehensive performance assessment of several new types of CRISPR-based gene drive systems employing toxin-antidote (TA) principles, which should be less prone to resistance and allow for the confinement of drives to a target population due to invasion frequency thresholds. RESULTS: The underlying principle of the proposed CRISPR toxin-antidote gene drives is to disrupt an essential target gene while also providing rescue by a recoded version of the target as part of the drive allele. Thus, drive alleles tend to remain viable, while wild-type targets are disrupted and often rendered nonviable, thereby increasing the relative frequency of the drive allele. Using individual-based simulations, we show that Toxin-Antidote Recessive Embryo (TARE) drives targeting an haplosufficient but essential gene (lethal when both copies are disrupted) can enable the design of robust, regionally confined population modification strategies with high flexibility in choosing promoters and targets. Toxin-Antidote Dominant Embryo (TADE) drives require a haplolethal target gene and a germline-restricted promoter, but they could permit faster regional population modification and even regionally confined population suppression. Toxin-Antidote Dominant Sperm (TADS) drives can be used for population modification or suppression. These drives are expected to spread rapidly and could employ a variety of promoters, but unlike TARE and TADE, they would not be regionally confined and also require highly specific target genes. CONCLUSIONS: Overall, our results suggest that CRISPR-based TA gene drives provide promising candidates for flexible ecological engineering strategies in a variety of organisms.


Assuntos
Antídotos/farmacologia , Antitoxinas/farmacologia , Sistemas CRISPR-Cas , Tecnologia de Impulso Genético/métodos , Genes Essenciais , Haploinsuficiência , Modelos Genéticos
4.
bioRxiv ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39185243

RESUMO

Due to their super-Mendelian inheritance, gene drive systems have the potential to provide revolutionary solutions to critical public health and environmental problems. For suppression drives, however, spatial structure can cause "chasing" population dynamics that may postpone target population elimination or even cause the drive to fail. In chasing, wild-type individuals elude the drive and recolonize previously suppressed areas. The drive can re-enter these recolonized areas, but often is not able to catch up to wild-type and finally eliminate it. Previous methods for chasing detection are only suitable to limited parameter ranges. In this study with expanded parameter ranges, we found that the shift from chasing dynamics to static equilibrium outcomes is continuous as drive performance is reduced. To quantify this, we defined a Weighted Average Nearest Neighbor statistic to assess the clustering degree during chasing, while also characterizing chasing by the per-generation chance of population elimination and drive loss. To detect chasing dynamics in local areas and to detect the start of chasing, we implemented Density-Based Spatial Clustering of Applications with Noise. Using these techniques, we determined the effect of arena size, resistance allele formation rate in both the germline and in the early embryo from maternally deposited Cas9, life history and reproduction strategies, and density-dependent growth curve shape on chasing outcomes. We found that larger real-world areas will be much more vulnerable to chasing and that species with overlapping generations, fecundity-based density dependence, and concave density-dependent growth curves have smaller and more clustered local chasing with a greater chance of eventual population elimination. We also found that embryo resistance and germline resistance hinder drive performance in different ways. These considerations will be important for determining the necessary drive performance parameters needed for success in different species, and whether future drives could potentially be considered as release candidates.

5.
Elife ; 112022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36239372

RESUMO

Recent experiments have produced several Anopheles gambiae homing gene drives that disrupt female fertility genes, thereby eventually inducing population collapse. Such drives may be highly effective tools to combat malaria. One such homing drive, based on the zpg promoter driving CRISPR/Cas9, was able to eliminate a cage population of mosquitoes. A second version, purportedly improved upon the first by incorporating an X-shredder element (which biases inheritance towards male offspring), was similarly successful. Here, we analyze experimental data from each of these gene drives to extract their characteristics and performance parameters and compare these to previous interpretations of their experimental performance. We assess each suppression drive within an individual-based simulation framework that models mosquito population dynamics in continuous space. We find that the combined homing/X-shredder drive is actually less effective at population suppression within the context of our mosquito population model. In particular, the combined drive often fails to completely suppress the population, instead resulting in an unstable equilibrium between drive and wild-type alleles. By contrast, otherwise similar drives based on the nos promoter may prove to be more promising candidates for future development than originally thought.


Assuntos
Anopheles , Malária , Animais , Masculino , Feminino , Anopheles/genética , Alelos , Padrões de Herança , Mosquitos Vetores/genética
6.
Evol Appl ; 14(4): 1052-1069, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33897820

RESUMO

CRISPR gene drive systems offer a mechanism for transmitting a desirable transgene throughout a population for purposes ranging from vector-borne disease control to invasive species suppression. In this simulation study, we assess the performance of several CRISPR-based underdominance gene drive constructs employing toxin-antidote (TA) principles. These drives disrupt the wild-type version of an essential gene using a CRISPR nuclease (the toxin) while simultaneously carrying a recoded version of the gene (the antidote). Drives of this nature allow for releases that could be potentially confined to a desired geographic location. This is because such drives have a nonzero-invasion threshold frequency required for the drive to spread through the population. We model drives which target essential genes that are either haplosufficient or haplolethal, using nuclease promoters with expression restricted to the germline, promoters that additionally result in cleavage activity in the early embryo from maternal deposition, and promoters that have ubiquitous somatic expression. We also study several possible drive architectures, considering both "same-site" and "distant-site" systems, as well as several reciprocally targeting drives. Together, these drive variants provide a wide range of invasion threshold frequencies and options for both population modification and suppression. Our results suggest that CRISPR TA underdominance drive systems could allow for the design of flexible and potentially confinable gene drive strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA