RESUMO
Mutations in leucine-rich repeat kinase 2 (LRRK2) are a common cause of familial and sporadic Parkinson's disease (PD). Elevated LRRK2 kinase activity and neurodegeneration are linked, but the phosphosubstrate that connects LRRK2 kinase activity to neurodegeneration is not known. Here, we show that ribosomal protein s15 is a key pathogenic LRRK2 substrate in Drosophila and human neuron PD models. Phosphodeficient s15 carrying a threonine 136 to alanine substitution rescues dopamine neuron degeneration and age-related locomotor deficits in G2019S LRRK2 transgenic Drosophila and substantially reduces G2019S LRRK2-mediated neurite loss and cell death in human dopamine and cortical neurons. Remarkably, pathogenic LRRK2 stimulates both cap-dependent and cap-independent mRNA translation and induces a bulk increase in protein synthesis in Drosophila, which can be prevented by phosphodeficient T136A s15. These results reveal a novel mechanism of PD pathogenesis linked to elevated LRRK2 kinase activity and aberrant protein synthesis in vivo.
Assuntos
Neurônios/metabolismo , Doença de Parkinson/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Ribossômicas/metabolismo , Sequência de Aminoácidos , Animais , Drosophila melanogaster , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Dados de Sequência Molecular , Neurônios/patologia , Doença de Parkinson/patologia , Proteínas Ribossômicas/químicaRESUMO
We examined pretraining tasks leveraging abundant labeled data to effectively enhance molecular representation learning in downstream tasks, specifically emphasizing graph transformers to improve the prediction of ADMET properties. Our investigation revealed limitations in previous pretraining tasks and identified more meaningful training targets, ranging from 2D molecular descriptors to extensive quantum chemistry simulations. These data were seamlessly integrated into supervised pretraining tasks. The implementation of our pretraining strategy and multitask learning outperforms conventional methods, achieving state-of-the-art outcomes in 7 out of 22 ADMET tasks within the Therapeutics Data Commons by utilizing a shared encoder across all tasks. Our approach underscores the effectiveness of learning molecular representations and highlights the potential for scalability when leveraging extensive data sets, marking a significant advancement in this domain.
Assuntos
Aprendizado de Máquina , Teoria Quântica , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Descoberta de Drogas/métodos , HumanosRESUMO
Nanoscopic investigation of bacterial cells is essential to reveal their physiological status, impacting all cellular functions. Currently, this requires labeled probes or targeted staining procedures. Herein, we report a new bacterial feature, intracellular dynamics-resolved Rayleigh scattering (IDRS), that visualizes spatiotemporal cytoplasmic transitions in unlabeled bacteria and characterizes their real-time physiological status in 10 s. From single-bacterium IDRS signals, we discovered unique spatial patterns and their multiple transitions in Gram-negative and Gram-positive bacteria. The magnitude of IDRS signal variation highly correlated with the metabolic status of bacteria, differentiating persistent subpopulations. This is also the first report demonstrating distinct real-time metabolic conditions of unlabeled drug-resistant bacteria that are exposed to different doses of antibiotics. Our strategy opens up a way to simultaneously trace in situ metabolic and antibiotic resistance statuses, which can be applied in single-cell level control of bacterial metabolism and efficacy with a heterogeneous nature.
Assuntos
Antibacterianos , Bactérias , Antibacterianos/farmacologia , Citoplasma , Citosol , Coloração e RotulagemRESUMO
A targeted metabologenomic method was developed to selectively discover terminal oxazole-bearing natural products from bacteria. For this, genes encoding oxazole cyclase, a key enzyme in terminal oxazole biosynthesis, were chosen as the genomic signature to screen bacterial strains that may produce oxazole-bearing compounds. Sixteen strains were identified from the screening of a bacterial DNA library (1,000â strains) using oxazole cyclase gene-targeting polymerase chain reaction (PCR) primers. The PCR amplicon sequences were subjected to phylogenetic analysis and classified into nine clades. 1H-13C coupled-HSQC NMR spectra obtained from the culture extracts of the hit strains enabled the unequivocal detection of the target compounds, including five new oxazole compounds, based on the unique 1JCH values and chemical shifts of oxazole: lenzioxazole (1) possessing an unprecedented cyclopentane, permafroxazole (2) bearing a tetraene conjugated with carboxylic acid, tenebriazine (3) incorporating two modified amino acids, and methyl-oxazolomycins A and B (4 and 5). Tenebriazine displayed inhibitory activity against pathogenic fungi, whereas methyl-oxazolomycins A and B (4 and 5) selectively showed anti-proliferative activity against estrogen receptor-positive breast cancer cells. This metabologenomic method enables the logical and efficient discovery of new microbial natural products with a target structural motif without the need for isotopic labeling.
Assuntos
Produtos Biológicos , Oxazóis , Oxazóis/química , Oxazóis/farmacologia , Oxazóis/metabolismo , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/metabolismo , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Metabolômica , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas , Bactérias/efeitos dos fármacosRESUMO
Background and Objectives: The Child-Pugh (CP) score and Model for End-Stage Liver Disease (MELD) are classical systems for predicting mortality in patients with liver cirrhosis (LC). The MELD-GFR assessment in liver disease-sodium (MELD-GRAIL-Na) was designed to better reflect renal function and, therefore, provide better mortality predictions. This study aimed to compare the prediction accuracy of MELD-GRAIL-Na compared to CP and MELD in predicting short-term (1- and 3-month) mortality in Korean patients. Materials and Methods: Medical records of patients with LC admitted to the Konkuk University Hospital from 2015 to 2020 were retrospectively reviewed. Predictive values of the CP, MELD, and MELD-GRAIL-Na for 1-month and 3-month mortality were calculated using the area under the receiver operating curve (AUROC) and were compared using DeLong's test. Results: In total, 1249 patients were enrolled; 102 died within 1 month, and 146 within 3 months. AUROCs of CP, MELD, and MELD-GRAIL-Na were 0.831, 0.847, and 0.857 for 1-month mortality and 0.837, 0.827, and 0.835 for 3-month mortality, respectively, indicating no statistical significance. For patients with CP classes B and C, AUROCs of CP, MELD, and MELD-GRAIL-Na were 0.782, 0.809, and 0.825 for 1-month mortality and 0.775, 0.769, and 0.786 for 3-month mortality, respectively. There was a significant difference between CP and MELD-GRAIL-Na in predicting 1-month mortality (p = 0.0428) and between MELD and MELD-GRAIL-Na in predicting 1-month (p = 0.0493) and 3-month mortality (p = 0.0225). Conclusions: Compared to CP and MELD, MELD-GRAIL-Na was found to be a better and more useful system for evaluating short-term (1- and 3-month) mortality in Korean patients with cirrhosis, especially those with advanced cirrhosis (CP class B and C).
Assuntos
Doença Hepática Terminal , Cirrose Hepática , Humanos , Doença Hepática Terminal/mortalidade , Cirrose Hepática/mortalidade , Valor Preditivo dos Testes , Prognóstico , República da Coreia/epidemiologia , Estudos Retrospectivos , Curva ROC , Índice de Gravidade de Doença , Sódio , População do Leste AsiáticoRESUMO
T cells can be controllably stimulated through antigen-specific or nonspecific protocols. Accompanying functional hallmarks of T cell activation can include cytoskeletal reorganization, cell size increase, and cytokine secretion. Photon-induced near-field electron microscopy (PINEM) is used to image and quantify evanescent electric fields at the surface of T cells as a function of various stimulation conditions. While PINEM signal strength scales with multiple of the biophysical changes associated with T cell functional activation, it mostly strongly correlates with antigen-engagement of the T cell receptors, even under conditions that do not lead to functional T cell activation. PINEM image analysis suggests that a stimulation-induced reorganization of T cell surface structure, especially over length scales of a few hundred nanometers, is the dominant contributor to these PINEM signal changes. These experiments reveal that PINEM can provide a sensitive label-free probe of nanoscale cellular surface structures.
Assuntos
Ativação Linfocitária , Linfócitos T/ultraestrutura , Humanos , Células Jurkat , Microscopia Eletrônica/métodos , Propriedades de SuperfícieRESUMO
Polycystic ovarian syndrome (PCOS) is a common reproductive endocrine disorder in reproductive-age women. Due to its various pathophysiological properties and clinical heterophenotypes, the mechanism of PCOS pathogenesis is still unclear. Several animal models have been used to study PCOS and allow the exploration of the specific mechanism underlying PCOS. We focused on streptozotocin (STZ) to develop a non-steroidal and non-diabetic PCOS model. We administered multiple STZ injections to female C57BL/6 mice (3-4 weeks old) at different concentrations: STZ-15 (15 mg/kg), STZ-30 (30 mg/kg), and STZ-60 (60 mg/kg) treatments. During the experimental period, we analyzed body weight, blood glucose levels, and estrous cycle pattern. Furthermore, five weeks after STZ administration, we examined hormone levels and the morphology of ovarian tissues. Mice in the STZ-15 group did not show differences in body weights, blood glucose level, insulin level, and insulin tolerance compared to wild-type and control groups whereas those in the STZ-60 group presented a typical diabetes phenotype. In the case of the STZ-30 group, only increased blood glucose level was observed. Total testosterone levels were significantly elevated in STZ-15 and STZ-30 groups. Luteinizing hormone (LH) and estradiol levels were not significantly changed in the STZ-treated groups. The number of ovarian antral follicles and atretic follicles significantly increased in the ovary of mice in the STZ-15 and STZ-30 groups. All STZ-treated groups manifested irregular estrus cycles. However, the patterns of estrous cycles were different between mice treated with different STZ concentrations. We found that PI3K-AKT and IRS-1 signaling in the ovary was enhanced by low doses of STZ treatment. Taken together, our finding indicates that multiple injections of STZ at low doses induce PCOS features in mice without induction of diabetes features.
Assuntos
Proteínas Substratos do Receptor de Insulina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Síndrome do Ovário Policístico/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estreptozocina/efeitos adversos , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Estradiol/metabolismo , Ciclo Estral , Feminino , Humanos , Hormônio Luteinizante/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Síndrome do Ovário Policístico/induzido quimicamente , Transdução de Sinais/efeitos dos fármacos , Testosterona/metabolismoRESUMO
Herbal medicines are widely utilized for disease prevention and health promotion. GHX02 consists of mixtures including Gwaruin (Trichosanthes kirilowii), Haengin (Prunus armeniaca), Hwangryeon (Coptis japonica) and Hwangkeum (Scutellaria baicalensis). It has been purported to have therapeutic effectiveness in cases of severe bronchitis. Non-clinical safety testing comprised a single-dose oral toxicity study and a 28-day repeated-dose oral toxicity study with a 14-day recovery period, and genotoxicity was assessed by a bacterial reverse mutation test, in vitro chromosomal aberration test, in vivo mouse bone marrow micronucleus test and single cell gel electrophoresis assay (comet assay). In the single-dose oral toxicity study, the approximate lethal dosage is estimated to be higher than 5000 mg/kg in rats. Thus, the dosage levels were set at 0, 1250, 2500 and 5000 mg/kg/day in the 28-day repeated-dose oral toxicity study, and 10 male rats and 10 female rats/dose were administered GHX02. No clinical signs of toxicological significance were recorded in any animal during the dosing and the observation period in the single-dose study. The no-observed-adverse-effect level of GHX02 was 5000 mg/kg/day when administered orally for 28 days to male and female Sprague-Dawley rats. Despite increases in the frequencies of cells with numerical chromosomal aberration in the in vitro test, the increases were not considered relevant to the in vivo genetic risk. Except for the increase of in vitro numerical chromosomal aberration, clear negative results were obtained from other genetic toxicity studies.
Assuntos
Bronquite/tratamento farmacológico , Relação Dose-Resposta a Droga , Extratos Vegetais/toxicidade , Extratos Vegetais/uso terapêutico , Plantas Medicinais/toxicidade , Administração Oral , Animais , Coptis/química , Testes de Mutagenicidade , Prunus armeniaca/química , Ratos Sprague-Dawley , Scutellaria baicalensis/química , Testes de Toxicidade , Trichosanthes/químicaRESUMO
Malignant pleural effusion (MPE), the presence of malignant cells in pleural fluid, is often the first sign of many cancers and occurs in patients with metastatic malignancies. Accurate detection of tumor cells in pleural fluid is crucial because the presence of MPE denotes an advanced stage of disease and directs a switch in clinical managements. Cytology, as a traditional diagnostic tool, has limited sensitivity especially when tumor cells are not abundant, and may be confounded by reactive mesothelial cells in the pleural fluid. We describe a highly sensitive approach for rapid detection of metabolically active tumor cells in MPE via exploiting the altered glucose metabolism of tumor cells relative to benign cells. Metabolically active tumor cells with high glucose uptake, as evaluated by a fluorescent glucose analog (2-NBDG), are identified by high-throughput fluorescence screening within a chip containing 200,000 addressable microwells and collected for malignancy confirmation via single-cell sequencing. We demonstrate the utility of this approach through analyzing MPE from a cohort of lung cancer patients. Most candidate tumor cells identified are confirmed to harbor the same driver oncogenes as their primary lesions. In some patients, emergence of secondary mutations that mediate acquired resistance to ongoing targeted therapies is also detected before resistance is manifested in the clinical imaging. The detection scheme can be extended to analyze peripheral blood samples. Our approach may serve as a valuable complement to cytology in MPE diagnosis, helping identify the driver oncogenes and resistance-leading mutations for targeted therapies.
Assuntos
Ensaios de Triagem em Larga Escala/métodos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/metabolismo , Derrame Pleural Maligno/diagnóstico , Derrame Pleural Maligno/metabolismo , Derrame Pleural/diagnóstico , Derrame Pleural/metabolismo , 4-Cloro-7-nitrobenzofurazano/análogos & derivados , 4-Cloro-7-nitrobenzofurazano/metabolismo , Células A549 , Antígenos de Neoplasias/análise , Antígenos de Neoplasias/sangue , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/sangue , Antígeno Carcinoembrionário/análise , Antígeno Carcinoembrionário/sangue , Linhagem Celular Tumoral , Desoxiglucose/análogos & derivados , Desoxiglucose/metabolismo , Diagnóstico Diferencial , Glucose/metabolismo , Humanos , Leucócitos , Neoplasias Pulmonares/sangue , Derrame Pleural/sangue , Derrame Pleural Maligno/sangue , Tomografia por Emissão de Pósitrons/métodosRESUMO
Continuous BRAF inhibition of BRAF mutant melanomas triggers a series of cell state changes that lead to therapy resistance and escape from immune control before establishing acquired resistance genetically. We used genome-wide transcriptomics and single-cell phenotyping to explore the response kinetics to BRAF inhibition for a panel of patient-derived BRAFV600 -mutant melanoma cell lines. A subset of plastic cell lines, which followed a trajectory covering multiple known cell state transitions, provided models for more detailed biophysical investigations. Markov modeling revealed that the cell state transitions were reversible and mediated by both Lamarckian induction and nongenetic Darwinian selection of drug-tolerant states. Single-cell functional proteomics revealed activation of certain signaling networks shortly after BRAF inhibition, and before the appearance of drug-resistant phenotypes. Drug targeting those networks, in combination with BRAF inhibition, halted the adaptive transition and led to prolonged growth inhibition in multiple patient-derived cell lines.
Assuntos
Resistencia a Medicamentos Antineoplásicos , Melanoma/genética , Melanoma/metabolismo , Transdução de Sinais , Análise de Célula Única , Adaptação Fisiológica , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Cadeias de Markov , Melanoma/tratamento farmacológico , Melanoma/patologia , NF-kappa B/metabolismo , Fenótipo , Proteoma , Proteômica/métodos , Proteínas Proto-Oncogênicas B-raf/genéticaRESUMO
The peroxisome proliferator-activated receptor (PPAR)-α agonist fenofibrate is used as a lipid-lowering agent to reduce cholesterol and triglyceride in blood. In this study, we investigated whether fenofibrate affects osteoblast differentiation of osteogenic precursor cells. Quantitative real-time PCR and alkaline phosphatase (ALP) staining assays revealed that fenofibrate can enhance the osteoblast differentiation of C3H10T1/2 and MC3T3-E1 cells. In contrast with fenofibrate, the PPARγ agonist rosiglitazone decreased or did not affect the expression of osteogenic genes in these cells. Fenofibrate dose- and time-dependently increased PPARα expression, and concomitantly increased the expression of bone morphogenetic protein 2 (BMP2). Knockdown of PPARα abolished fenofibrate-induced BMP2 expression, activity of the BMP2 promoter gene, and calcium deposition. The chromatin immunoprecipitation assay demonstrated that fenofibrate increased BMP2 expression by inducing direct binding of PPARα to the BMP2 promoter region. Taken together, we suggest that fenofibrate has a stimulatory effect on osteoblast differentiation via the elevation of PPARα levels and the PPARα-mediated BMP2 expression. Our findings provide fenofibrate as a useful agent for controlling hypercholesterolemic patients with osteoporosis.
Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Fenofibrato/farmacologia , Osteoblastos/efeitos dos fármacos , PPAR alfa/metabolismo , Animais , Proteína Morfogenética Óssea 2/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Osteoblastos/citologia , Osteoblastos/fisiologia , PPAR alfa/agonistas , PPAR alfa/genética , Regiões Promotoras Genéticas , Transcrição GênicaRESUMO
Protein catalyzed capture agents (PCCs) are synthetic antibody surrogates that can target a wide variety of biologically relevant proteins. As a step toward developing a high-throughput PCC pipeline, we report on the preparation of a barcoded rapid assay platform for the analysis of hits from PCC library screens. The platform is constructed by first surface patterning a micrometer scale barcode composed of orthogonal ssDNA strands onto a glass slide. The slide is then partitioned into microwells, each of which contains multiple copies of the full barcode. Biotinylated candidate PCCs from a click screen are assembled onto the barcode stripes using a complementary ssDNA-encoded cysteine-modified streptavidin library. This platform was employed to evaluate candidate PCC ligands identified from an epitope targeted in situ click screen against the two conserved allosteric switch regions of the Kirsten rat sarcoma (KRas) protein. A single microchip was utilized for the simultaneous evaluation of 15 PCC candidate fractions under more than a dozen different assay conditions. The platform also permitted more than a 10-fold savings in time and a more than 100-fold reduction in biological and chemical reagents relative to traditional multiwell plate assays. The best ligand was shown to exhibit an in vitro inhibition constant (IC50) of â¼24 µM.
Assuntos
Regulação Alostérica/efeitos dos fármacos , DNA de Cadeia Simples/química , Inibidores Enzimáticos/farmacologia , Análise em Microsséries/métodos , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Sítio Alostérico/efeitos dos fármacos , Biotinilação , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/química , Humanos , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Estreptavidina/químicaRESUMO
Chemical investigation of a halophilic actinomycete strain belonging to the genus Nocardiopsis inhabiting a hypersaline saltern led to the discovery of new 18-membered macrolides with nitrile functionality, borrelidins C-E (1-3), along with a previously reported borrelidin (4). The planar structures of borrelidins C-E, which are new members of the rare borrelidin class of antibiotics, were elucidated by NMR, mass, IR, and UV spectroscopic analyses. The configurations of borrelidines C-E were determined by the interpretation of ROESY NMR spectra, J-based configuration analysis, a modified Mosher's method, and CD spectroscopic analysis. Borrelidins C and D displayed inhibitory activity, particularly against the Gram-negative pathogen Salmonella enterica, and moderate cytotoxicity against the SNU638 and K562 carcinoma cell lines.
Assuntos
Actinobacteria/química , Antibacterianos/química , Macrolídeos/química , Antibacterianos/farmacologia , Linhagem Celular Tumoral , Álcoois Graxos/química , Álcoois Graxos/farmacologia , Humanos , Células K562 , Macrolídeos/farmacologia , Salmonella enterica/efeitos dos fármacos , Análise Espectral/métodosRESUMO
This paper describes a microfluidics-based workflow for genetically targeted isolation and cultivation of microorganisms from complex clinical samples. Data sets from high-throughput sequencing suggest the existence of previously unidentified bacterial taxa and functional genes with high biomedical importance. Obtaining isolates of these targets, preferably in pure cultures, is crucial for advancing understanding of microbial genetics and physiology and enabling physical access to microbes for further applications. However, the majority of microbes have not been cultured, due in part to the difficulties of both identifying proper growth conditions and characterizing and isolating each species. We describe a method that enables genetically targeted cultivation of microorganisms through a combination of microfluidics and on- and off-chip assays. This method involves (i) identification of cultivation conditions for microbes using growth substrates available only in small quantities as well as the correction of sampling bias using a "chip wash" technique; and (ii) performing on-chip genetic assays while also preserving live bacterial cells for subsequent scale-up cultivation of desired microbes, by applying recently developed technology to create arrays of individually addressable replica microbial cultures. We validated this targeted approach by cultivating a bacterium, here referred to as isolate microfluidicus 1, from a human cecal biopsy. Isolate microfluidicus 1 is, to our knowledge, the first successful example of targeted cultivation of a microorganism from the high-priority group of the Human Microbiome Project's "Most Wanted" list, and, to our knowledge, the first cultured representative of a previously unidentified genus of the Ruminococcaceae family.
Assuntos
Marcação de Genes , Intestinos/microbiologia , Microbiota , Técnicas Analíticas Microfluídicas , Humanos , Dados de Sequência MolecularRESUMO
A common cause of Parkinson disease are missense mutations in the leucine-rich repeat kinase 2 (LRRK2) catalytic Roc-COR domain, leading to a decrease in GTPase activity; and its kinase domain, leading to an increase in kinase activity and subsequent LRRK2 toxicity. Targeting LRRK2 with selective, brain-permeable kinase inhibitors is a promising approach to reduce toxicity, and thus is a major goal of clinical development. Understanding the specific signaling cascades triggered by LRRK2 mutations will be key to this aim. This article is part of a special issue on Parkinson disease.
Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia , Humanos , Mutação de Sentido Incorreto/genética , Doença de Parkinson/diagnósticoRESUMO
In this study, benzenethiol ligands were applied to the surface of CdSe@ZnS core@shell quantum dots (QDs) and their effect on the performance of quantum dot light-emitting diodes (QD-LEDs) was investigated. Conventional long-chained oleic acid (OA) and trioctylphosphine (TOP) capping ligands were partially replaced by short-chained benzenethiol ligands in order to increase the stability of QDs during purification and also improve the electroluminescence performance of QD-LEDs. The quantum yield of the QD solution was increased from 41% to 84% by the benzenethiol ligand exchange. The mobility of the QD films with benzenethiol ligands approximately doubled to 2.42 × 10(-5) cm(2) V(-1) s(-1) from 1.19 × 10(-5) cm(2) V(-1) s(-1) compared to the device consisting of OA/TOP-capped QDs, and an approximately 1.8-fold improvement was achieved over QD-LEDs fabricated with bezenethiol ligand-exchanged QDs with respect to the maximum luminance and current efficiency. The turn-on voltage decreased by about -0.6 V through shifting the energy level of the QDs with benzenethiol ligands compared to conventional OA and TOP ligands.
RESUMO
We describe chemical approaches for integrated metabolic and proteomic assays from single cells. Quantitative assays for intracellular metabolites, including glucose uptake and three other species, are designed as surface-competitive binding assays with fluorescence readouts. This enables integration into a microarray format with functional protein immunoassays, all of which are incorporated into the microchambers of a single-cell barcode chip (SCBC). By using the SCBC, we interrogate the response of human-derived glioblastoma cancer cells to epidermal growth factor receptor inhibition. We report, for the first time, on both the intercellular metabolic heterogeneity as well as the baseline and drug-induced changes in the metabolite-phosphoprotein correlation network.
Assuntos
Ensaios de Seleção de Medicamentos Antitumorais/instrumentação , Metabolômica/instrumentação , Análise em Microsséries/instrumentação , Proteômica/instrumentação , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Desenho de Equipamento , Receptores ErbB/antagonistas & inibidores , Cloridrato de Erlotinib/farmacologia , Imunofluorescência/instrumentação , Imunofluorescência/métodos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Metabolômica/métodos , Análise em Microsséries/métodos , Proteômica/métodosRESUMO
Mutations in the catalytic Roc-COR and kinase domains of leucine-rich repeat kinase 2 (LRRK2) are a common cause of familial Parkinson's disease (PD). LRRK2 mutations cause PD with age-related penetrance and clinical features identical to late-onset sporadic PD. Biochemical studies support an increase in LRRK2 kinase activity and a decrease in GTPase activity for kinase domain and Roc-COR mutations, respectively. Strong evidence exists that LRRK2 toxicity is kinase dependent leading to extensive efforts to identify selective and brain-permeable LRRK2 kinase inhibitors for clinical development. Cell and animal models of PD indicate that LRRK2 mutations affect vesicular trafficking, autophagy, protein synthesis, and cytoskeletal function. Although some of these biological functions are affected consistently by most disease-linked mutations, others are not and it remains currently unclear how mutations that produce variable effects on LRRK2 biochemistry and function all commonly result in the degeneration and death of dopamine neurons. LRRK2 is typically present in Lewy bodies and its toxicity in mammalian models appears to be dependent on the presence of α-synuclein, which is elevated in human iPS-derived dopamine neurons from patients harboring LRRK2 mutations. Here, we summarize biochemical and functional studies of LRRK2 and its mutations and focus on aberrant vesicular trafficking and protein synthesis as two leading mechanisms underlying LRRK2-linked disease.
Assuntos
Mutação/genética , Doença de Parkinson/genética , Doença de Parkinson/patologia , Proteínas Serina-Treonina Quinases/genética , GTP Fosfo-Hidrolases/metabolismo , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Sinucleínas/metabolismoRESUMO
The brain integrates information from pain-predictive cues and noxious inputs to construct the pain experience. Although previous studies have identified neural encodings of individual pain components, how they are integrated remains elusive. Here, using a cue-induced pain task, we examined temporal functional magnetic resonance imaging activities within the state space, where axes represent individual voxel activities. By analyzing the features of these activities at the large-scale network level, we demonstrated that overall brain networks preserve both cue and stimulus information in their respective subspaces within the state space. However, only higher-order brain networks, including limbic and default mode networks, could reconstruct the pattern of participants' reported pain by linear summation of subspace activities, providing evidence for the integration of cue and stimulus information. These results suggest a hierarchical organization of the brain for processing pain components and elucidate the mechanism for their integration underlying our pain perception.
Assuntos
Encéfalo , Sinais (Psicologia) , Imageamento por Ressonância Magnética , Dor , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Encéfalo/fisiologia , Masculino , Dor/fisiopatologia , Adulto , Feminino , Mapeamento Encefálico , Percepção da Dor/fisiologia , Adulto Jovem , Rede Nervosa/fisiopatologiaRESUMO
Frequent blood glucose monitoring is a crucial routine for diabetic patients. Traditional invasive methods can cause discomfort and pain and even pose a risk of infection. As a result, researchers have been exploring noninvasive techniques. However, a limited number of products have been developed for the market due to their high cost. In this study, we developed a low-cost, highly accessible, and noninvasive contact lens-based glucose monitoring system. We functionalized the surface of the contact lens with boronic acid, which has a strong but reversible binding affinity to glucose. To achieve facile conjugation of boronic acid, we utilized a functional coating layer called poly(tannic acid). The functionalized contact lens binds to glucose in body fluids (e.g., tear) and releases it when soaked in an enzymatic cocktail, allowing for the glucose level to be quantified through a colorimetric assay. Importantly, the transparency and oxygen permeability of the contact lens, which are crucial for practical use, were maintained after functionalization, and the lenses showed high biocompatibility. Based on the analysis of colorimetric data generated by the smartphone application and ultraviolet-visible (UV-vis) spectra, we believe that this contact lens has a high potential to be used as a smart diagnostic tool for monitoring and managing blood glucose levels.