Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 40(3): 733-750, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31826653

RESUMO

OBJECTIVE: Cerebral arterial networks match blood flow delivery with neural activity. Neurovascular response begins with a stimulus and a focal change in vessel diameter, which by themselves is inconsequential to blood flow magnitude, until they spread and alter the contractile status of neighboring arterial segments. We sought to define the mechanisms underlying integrated vascular behavior and considered the role of intercellular electrical signaling in this phenomenon. Approach and Results: Electron microscopic and histochemical analysis revealed the structural coupling of cerebrovascular cells and the expression of gap junctional subunits at the cell interfaces, enabling intercellular signaling among vascular cells. Indeed, robust vasomotor conduction was detected in human and mice cerebral arteries after focal vessel stimulation: a response attributed to endothelial gap junctional communication, as its genetic alteration attenuated this behavior. Conducted responses were observed to ascend from the penetrating arterioles, influencing the contractile status of cortical surface vessels, in a simulated model of cerebral arterial network. Ascending responses recognized in vivo after whisker stimulation were significantly attenuated in mice with altered endothelial gap junctional signaling confirming that gap junctional communication drives integrated vessel responses. The diminishment in vascular communication also impaired the critical ability of the cerebral vasculature to maintain blood flow homeostasis and hence tissue viability after stroke. CONCLUSIONS: Our findings highlight the integral role of intercellular electrical signaling in transcribing focal stimuli into coordinated changes in cerebrovascular contractile activity and expose, a hitherto unknown mechanism for flow regulation after stroke.


Assuntos
Isquemia Encefálica/fisiopatologia , Comunicação Celular , Circulação Cerebrovascular , Células Endoteliais , Junções Comunicantes , Artéria Cerebral Média/inervação , Acoplamento Neurovascular , Acidente Vascular Cerebral/fisiopatologia , Adulto , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Simulação por Computador , Conexinas/genética , Conexinas/metabolismo , Modelos Animais de Doenças , Condutividade Elétrica , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Feminino , Junções Comunicantes/metabolismo , Junções Comunicantes/ultraestrutura , Homeostase , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Artéria Cerebral Média/metabolismo , Artéria Cerebral Média/ultraestrutura , Modelos Cardiovasculares , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Proteína alfa-5 de Junções Comunicantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA