Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
BMC Vet Res ; 17(1): 295, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34488750

RESUMO

BACKGROUND: Furosemide, a diuretic that acts on the loop of Henle, is commonly used to treat congestive heart failure in veterinary medicine. Some owners have difficulty in administering oral tablet medication to animal patients, which leads to noncompliance, especially during long-term administration. Oral disintegrating film (ODF) has the advantages of easy administration via a non-invasive route, rapid dissolution, and low suffocating risk. The objective of this study was to research the pharmacokinetic (PK) profiles and diuretic effect of furosemide after intravenous (IV), orally uncoated tablet (OUT), and newly developed ODF administration in healthy beagle dogs. In this study, a furosemide-loaded ODF (FS-ODF) formulation was developed and five beagle dogs were administered a single dose (2 mg/kg) of furosemide via each route using a cross-over design. RESULTS: The most suitable film-forming agent was sodium alginate; thus, this was used to develop an ODF for easy drug administration. No significant differences were detected in the PK profiles between OUT and FS-ODF. In the blood profiles, the concentration of total protein was significantly increased compared to the baseline (0 h), whereas no significant difference was detected in the concentration of creatinine and hematocrit compared to the baseline. FS-ODF resulted in a similar hourly urinary output to OUT during the initial 2 h after administration. The urine specific gravity was significantly decreased compared to the baseline in each group. The peak times of urine electrolyte (sodium and chloride) excretion per hour were 1 h (IV), 2 h (OUT), and 2 h (FS-ODF). CONCLUSIONS: These results suggest that the PK/PD of furosemide after administration of newly developed FS-ODF are similar to those of OUT in healthy dogs. Therefore, the ODF formulation has the benefits of ease and convenience, which would be helpful to owners of companion animals, such as small dogs (< 10 kg), for the management of congestive heart failure.


Assuntos
Cães/metabolismo , Furosemida/administração & dosagem , Furosemida/farmacocinética , Administração Intravenosa/veterinária , Administração Oral , Alginatos/química , Animais , Estudos Cross-Over , Diuréticos/administração & dosagem , Diuréticos/farmacocinética , Cães/urina , Sistemas de Liberação de Medicamentos/veterinária , Feminino , Masculino , Comprimidos/administração & dosagem
2.
Pharmaceutics ; 10(4)2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30487449

RESUMO

The aim of this work was to prepare and optimize a solid self-nanoemulsifying drug delivery system pre-concentrate (SSP) containing water-insoluble flurbiprofen (FL) using a novel pseudo-ternary phase diagram. The pseudo-ternary phase diagram, composed of FL as the drug and dispersion core, Kollisolv MCT 70 as the oil phase, and TPGS (tocopherol polyethylene glycol 1000 succinate) as the surfactant, was constructed for the determination of the SSP region. SSP was investigated in terms of particle size, physical state by differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD), in vitro dissolution and oral pharmacokinetics in rats. The determined SSP (FL/Kollisolv MCT 70/TPGS = 10/10/80, weight %) in the pseudo-ternary phase diagram had the melting point of 32.37 °C and uniform mean particle size of below 30 nm without any precipitation of FL in the dispersion. In the dissolution test, the SSP exhibited 95.70 ± 3.40% of release at 15 min, whereas the raw FL showed poor dissolution (i.e., 6.75 ± 1.30%) at that time point. In addition, the SSP showed the enhanced oral absorption (i.e., 1.93-fold increase in AUCinfinite) as compared to the suspension group of raw FL. Therefore, the developed SSP would be a promising drug delivery system with excellent solubilization, dissolution, and bioavailability for FL.

3.
Int J Nanomedicine ; 13: 7095-7106, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30464461

RESUMO

BACKGROUND: The present study aimed to develop orlistat-loaded solid self-nanoemulsifying drug delivery system preconcentrate (SSP) with the minimum use of lipid excipients for the enhanced solubility, in vitro dissolution, lipase inhibition, and in vivo performance. MATERIALS AND METHODS: In the screening of solubilizing vehicles, Solutol HS15 and Lauroglycol 90 were selected as the surfactant and oil phase, respectively. A pseudo-ternary phase diagram composed of Solutol HS15, Lauroglycol 90, and orlistat as an anti-obesity agent and lipid component was constructed, and the SSP regions were confirmed in terms of the particle size distribution in water, melting point by differential scanning calorimetry, and crystallinity by X-ray diffraction. RESULTS: Physicochemical interaction between Solutol HS15 and orlistat resulted in SSP with various melting points in the range of 26°~33°C. The representative maximum orlistat-loaded SSP (orlistat/Solutol HS15/Lauroglycol 90=55/40/5, weight ratio) showed the melting point of 32.23°C and constructed uniform nanoemulsion with the particle size of 141.7±1.1 nm dispersed in water. In the dissolution test at pH 1.2 without any detergent, the SSP reached 98.12%±0.83% until 45 minutes, whereas raw orlistat showed no significant dissolution rate. The dissolution samples containing SSP showed a lipase inhibition of 90.42%±1.58% within 45 minutes. In terms of the reduction level of fat absorption in rats, the intake group of SSP gave a significantly higher fat excretion into stool than the one observed in the raw orlistat group (P<0.05). CONCLUSION: In conclusion, the suggested novel SSP formulation would be an effective and promising candidate for the treatment of obesity.


Assuntos
Sistemas de Liberação de Medicamentos , Emulsões/química , Nanopartículas/química , Orlistate/farmacologia , Administração Oral , Animais , Disponibilidade Biológica , Varredura Diferencial de Calorimetria , Excipientes/química , Fezes/química , Lipase/metabolismo , Lipídeos/química , Masculino , Óleos/química , Orlistate/administração & dosagem , Orlistate/química , Tamanho da Partícula , Transição de Fase , Ratos Sprague-Dawley , Solubilidade , Tensoativos/química , Sus scrofa , Temperatura de Transição , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA