Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 25(5): 790-801, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38664585

RESUMO

Innate immune cells generate a multifaceted antitumor immune response, including the conservation of essential nutrients such as iron. These cells can be modulated by commensal bacteria; however, identifying and understanding how this occurs is a challenge. Here we show that the food commensal Lactiplantibacillus plantarum IMB19 augments antitumor immunity in syngeneic and xenograft mouse tumor models. Its capsular heteropolysaccharide is the major effector molecule, functioning as a ligand for TLR2. In a two-pronged manner, it skews tumor-associated macrophages to a classically active phenotype, leading to generation of a sustained CD8+ T cell response, and triggers macrophage 'nutritional immunity' to deploy the high-affinity iron transporter lipocalin-2 for capturing and sequestering iron in the tumor microenvironment. This process induces a cycle of tumor cell death, epitope expansion and subsequent tumor clearance. Together these data indicate that food commensals might be identified and developed into 'oncobiotics' for a multi-layered approach to cancer therapy.


Assuntos
Ferro , Microambiente Tumoral , Animais , Ferro/metabolismo , Camundongos , Microambiente Tumoral/imunologia , Humanos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/imunologia , Camundongos Endogâmicos C57BL , Lipocalina-2/metabolismo , Lipocalina-2/imunologia , Feminino , Simbiose/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Ativação de Macrófagos/imunologia , Camundongos Knockout
2.
Proc Natl Acad Sci U S A ; 121(8): e2316871121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38346184

RESUMO

Postmenopausal osteoporosis arises from imbalanced osteoclast and osteoblast activity, and mounting evidence suggests a role for the osteoimmune system in bone homeostasis. Bisphosphonate (BP) is an antiresorptive agent, but its treatment failure rate can be as high as 40%. Here, we performed single-cell RNA sequencing on peripheral immune cells from carefully selected postmenopausal women: non-osteoporotic, osteoporosis improved after BP treatment, and BP-failed cases. We found an increase in myeloid cells in patients with osteoporosis (specifically, T cell receptor+ macrophages). Furthermore, lymphoid lineage cells varied significantly, notably elevated natural killer cells (NKs) in the BP-failed group. Moreover, we provide fruitful lists of biomarkers within the immune cells that exhibit condition-dependent differences. The existence of osteoporotic- and BP-failure-specific cellular information flows was revealed by cell-cell interaction analysis. These findings deepen our insight of the osteoporosis pathology enhancing comprehension of the role of immune heterogeneity in postmenopausal osteoporosis and BP treatment failure.


Assuntos
Conservadores da Densidade Óssea , Osteoporose Pós-Menopausa , Osteoporose , Humanos , Feminino , Difosfonatos/farmacologia , Difosfonatos/uso terapêutico , Osteoporose Pós-Menopausa/tratamento farmacológico , Osteoporose Pós-Menopausa/genética , Densidade Óssea , Conservadores da Densidade Óssea/farmacologia , Conservadores da Densidade Óssea/uso terapêutico , Osteoporose/tratamento farmacológico , Osteoporose/genética , Perfilação da Expressão Gênica
3.
Nature ; 588(7839): 664-669, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33328632

RESUMO

Current organoid models are limited by their inability to mimic mature organ architecture and associated tissue microenvironments1,2. Here we create multilayer bladder 'assembloids' by reconstituting tissue stem cells with stromal components to represent an organized architecture with an epithelium surrounding stroma and an outer muscle layer. These assembloids exhibit characteristics of mature adult bladders in cell composition and gene expression at the single-cell transcriptome level, and recapitulate in vivo tissue dynamics of regenerative responses to injury. We also develop malignant counterpart tumour assembloids to recapitulate the in vivo pathophysiological features of urothelial carcinoma. Using the genetically manipulated tumour-assembloid platform, we identify tumoural FOXA1, induced by stromal bone morphogenetic protein (BMP), as a master pioneer factor that drives enhancer reprogramming for the determination of tumour phenotype, suggesting the importance of the FOXA1-BMP-hedgehog signalling feedback axis between tumour and stroma in the control of tumour plasticity.


Assuntos
Organoides/patologia , Organoides/fisiologia , Regeneração , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/fisiopatologia , Bexiga Urinária/patologia , Bexiga Urinária/fisiologia , Adulto , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Feminino , Ouriços/metabolismo , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Organoides/fisiopatologia , Análise de Célula Única , Células-Tronco/citologia , Células-Tronco/patologia , Células-Tronco/fisiologia , Transcriptoma , Bexiga Urinária/citologia , Infecções Urinárias/metabolismo , Infecções Urinárias/patologia
4.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36575568

RESUMO

Identifying cancer type-specific driver mutations is crucial for illuminating distinct pathologic mechanisms across various tumors and providing opportunities of patient-specific treatment. However, although many computational methods were developed to predict driver mutations in a type-specific manner, the methods still have room to improve. Here, we devise a novel feature based on sequence co-evolution analysis to identify cancer type-specific driver mutations and construct a machine learning (ML) model with state-of-the-art performance. Specifically, relying on 28 000 tumor samples across 66 cancer types, our ML framework outperformed current leading methods of detecting cancer driver mutations. Interestingly, the cancer mutations identified by sequence co-evolution feature are frequently observed in interfaces mediating tissue-specific protein-protein interactions that are known to associate with shaping tissue-specific oncogenesis. Moreover, we provide pre-calculated potential oncogenicity on available human proteins with prediction scores of all possible residue alterations through user-friendly website (http://sbi.postech.ac.kr/w/cancerCE). This work will facilitate the identification of cancer type-specific driver mutations in newly sequenced tumor samples.


Assuntos
Biologia Computacional , Neoplasias , Humanos , Biologia Computacional/métodos , Neoplasias/genética , Neoplasias/diagnóstico , Mutação , Carcinogênese , Aprendizado de Máquina
5.
Nucleic Acids Res ; 50(4): 1849-1863, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35137181

RESUMO

Mouse models have been engineered to reveal the biological mechanisms of human diseases based on an assumption. The assumption is that orthologous genes underlie conserved phenotypes across species. However, genetically modified mouse orthologs of human genes do not often recapitulate human disease phenotypes which might be due to the molecular evolution of phenotypic differences across species from the time of the last common ancestor. Here, we systematically investigated the evolutionary divergence of regulatory relationships between transcription factors (TFs) and target genes in functional modules, and found that the rewiring of gene regulatory networks (GRNs) contributes to the phenotypic discrepancies that occur between humans and mice. We confirmed that the rewired regulatory networks of orthologous genes contain a higher proportion of species-specific regulatory elements. Additionally, we verified that the divergence of target gene expression levels, which was triggered by network rewiring, could lead to phenotypic differences. Taken together, a careful consideration of evolutionary divergence in regulatory networks could be a novel strategy to understand the failure or success of mouse models to mimic human diseases. To help interpret mouse phenotypes in human disease studies, we provide quantitative comparisons of gene expression profiles on our website (http://sbi.postech.ac.kr/w/RN).


Assuntos
Evolução Molecular , Redes Reguladoras de Genes , Animais , Humanos , Camundongos , Fenótipo , Especificidade da Espécie , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Acta Neurochir (Wien) ; 165(11): 3361-3369, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37728829

RESUMO

PURPOSE: This single center study aims to compare the treatment outcomes and procedure-related complications of coil embolization in elderly patients (60-79 years) and very elderly patients (aged 80 years or older) with cerebral aneurysms. METHODS: Data was collected from 504 elderly patients aged 60 years or older who underwent coil embolization for intracranial aneurysms from 2018 to 2021. The study evaluated patient-related and anatomical factors and assessed various outcomes, comparing results between groups using statistical analysis and propensity score matching. RESULTS: A total of 503 cerebral aneurysms were analyzed from individuals aged 60-79 years (n = 472) and those aged 80 years or older (n = 31). The majority of the aneurysms were unruptured with an average size of 3.5 mm in height and 3.4 mm in width. The patients were compared using 1:1 propensity score matching, and no significant differences were found in factors other than age and aortic elongation. Logistic analysis revealed that being over 80 years old and having a severe aortic arch elongation were identified as risk factors for procedure-related events in both total and unruptured cases. CONCLUSIONS: The study compared coil embolization treatment for cerebral aneurysms in patients aged 60-79 and over 80, finding no significant difference in treatment outcomes except for procedure-related events. Procedure-related events were associated with severe aortic arch elongation and being over 80 years old. Coil embolization can be considered safe and effective for patients over 80, but further trials are needed for accurate conclusions.


Assuntos
Embolização Terapêutica , Aneurisma Intracraniano , Idoso , Humanos , Idoso de 80 Anos ou mais , Aneurisma Intracraniano/terapia , Aneurisma Intracraniano/etiologia , Pontuação de Propensão , Embolização Terapêutica/efeitos adversos , Embolização Terapêutica/métodos , Resultado do Tratamento , Prótese Vascular , Estudos Retrospectivos
7.
Clin Oral Investig ; 28(1): 56, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38157055

RESUMO

OBJECTIVES: This study aimed to identify genetic variants associated with non-syndromic tooth agenesis (TA) in nine families from Mongolia using whole-exome sequencing (WES) and bioinformatics analysis. MATERIAL AND METHODS: The study enrolled 41 participants, including three inherited and six non-inherited families. WES analysis was performed on 14 saliva samples from individuals with non-syndromic TA. The potential candidate genes were identified through variant filtering and segregation analysis. The filtered variants were then analyzed in silico mutation impact analysis. RESULTS: WES analysis identified 21 variants associated with TA, and 5 of these variants met all filtering criteria. These variants were located in the exome region of MAST4, ITGA6, PITX2, CACNA1S, and CDON genes. The variant in PITX2 was found in eight participants from inherited and non-inherited families, while the MAST4 variant was identified in 6 participants from inherited families. CONCLUSIONS: The study identified various genetic variant candidates associated with TA in different family groups, with PITX2 being the most commonly identified. Our findings suggest that MAST4 may also be a novel candidate gene for TA due to its association with the Wnt signaling pathway. Additionally, we found that five candidate genes related to focal adhesion and calcium channel complex were significant and essential in tooth development. CLINICAL RELEVANCE: Identifying new pathogenic genes associated with TA can improve our understanding of the molecular mechanisms underlying the disease, leading to better diagnosis, prevention, and treatment. Early detection of TA based on biomarkers can improve dental management and facilitate orthodontic and prosthetic treatment.


Assuntos
Doenças Dentárias , Via de Sinalização Wnt , Humanos , Mutação , Linhagem , Proteínas Associadas aos Microtúbulos , Proteínas Serina-Treonina Quinases
8.
Metab Eng ; 74: 49-60, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36113751

RESUMO

The utility of engineering enzyme activity is expanding with the development of biotechnology. Conventional methods have limited applicability as they require high-throughput screening or three-dimensional structures to direct target residues of activity control. An alternative method uses sequence evolution of natural selection. A repertoire of mutations was selected for fine-tuning enzyme activities to adapt to varying environments during the evolution. Here, we devised a strategy called sequence co-evolutionary analysis to control the efficiency of enzyme reactions (SCANEER), which scans the evolution of protein sequences and direct mutation strategy to improve enzyme activity. We hypothesized that amino acid pairs for various enzyme activity were encoded in the evolutionary history of protein sequences, whereas loss-of-function mutations were avoided since those are depleted during the evolution. SCANEER successfully predicted the enzyme activities of beta-lactamase and aminoglycoside 3'-phosphotransferase. SCANEER was further experimentally validated to control the activities of three different enzymes of great interest in chemical production: cis-aconitate decarboxylase, α-ketoglutaric semialdehyde dehydrogenase, and inositol oxygenase. Activity-enhancing mutations that improve substrate-binding affinity or turnover rate were found at sites distal from known active sites or ligand-binding pockets. We provide SCANEER to control desired enzyme activity through a user-friendly webserver.


Assuntos
Engenharia de Proteínas , Mutação , Engenharia de Proteínas/métodos
9.
Clin Oral Investig ; 26(6): 4487-4498, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35243551

RESUMO

OBJECTIVES: This study aimed to comprehensively characterise genetic variants of amelogenesis imperfecta in a single Korean family through whole-exome sequencing and bioinformatics analysis. MATERIAL AND METHODS: Thirty-one individuals of a Korean family, 9 of whom were affected and 22 unaffected by amelogenesis imperfecta, were enrolled. Whole-exome sequencing was performed on 12 saliva samples, including samples from 8 affected and 4 unaffected individuals. The possible candidate genes associated with the disease were screened by segregation analysis and variant filtering. In silico mutation impact analysis was then performed on the filtered variants based on sequence conservation and protein structure. RESULTS: Whole-exome sequencing data revealed an X-linked dominant, heterozygous genomic missense mutation in the mitochondrial gene holocytochrome c synthase (HCCS). We also found that HCCS is potentially related to the role of mitochondria in amelogenesis. The HCCS variant was expected to be deleterious in both evolution-based and large population-based analyses. Further, the variant was predicted to have a negative effect on catalytic function of HCCS by in silico analysis of protein structure. In addition, HCCS had significant association with amelogenesis in literature mining analysis. CONCLUSIONS: These findings suggest new evidence for the relationship between amelogenesis and mitochondria function, which could be implicated in the pathogenesis of amelogenesis imperfecta. CLINICAL RELEVANCE: The discovery of HCCS mutations and a deeper understanding of the pathogenesis of amelogenesis imperfecta could lead to finding solutions for the fundamental treatment of this disease. Furthermore, it enables dental practitioners to establish predictable prosthetic treatment plans at an early stage by early detection of amelogenesis imperfecta through personalised medicine.


Assuntos
Amelogênese Imperfeita , Amelogênese Imperfeita/genética , Odontólogos , Humanos , Liases , Mutação , Papel Profissional , República da Coreia
10.
Development ; 145(7)2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29549110

RESUMO

Dishevelled (Dvl/Dsh) is a key scaffold protein that propagates Wnt signaling essential for embryogenesis and homeostasis. However, whether the antagonism of Wnt signaling that is necessary for vertebrate head formation can be achieved through regulation of Dsh protein stability is unclear. Here, we show that membrane-associated RING-CH2 (March2), a RING-type E3 ubiquitin ligase, antagonizes Wnt signaling by regulating the turnover of Dsh protein via ubiquitin-mediated lysosomal degradation in the prospective head region of Xenopus We further found that March2 acquires regional and functional specificities for head formation from the Dsh-interacting protein Dapper1 (Dpr1). Dpr1 stabilizes the interaction between March2 and Dsh in order to mediate ubiquitylation and the subsequent degradation of Dsh protein only in the dorso-animal region of Xenopus embryo. These results suggest that March2 restricts cytosolic pools of Dsh protein and reduces the need for Wnt signaling in precise vertebrate head development.


Assuntos
Proteínas Desgrenhadas/metabolismo , Cabeça/embriologia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Técnicas de Cultura de Células , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Morfogênese/genética , Proteólise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Ubiquitinação/genética , Proteínas Wnt/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/metabolismo
11.
Physiol Plant ; 172(3): 1422-1438, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31828796

RESUMO

ABCG subfamily proteins are highly enriched in terrestrial plants. Many of these proteins secrete secondary metabolites that repel or inhibit pathogens. To establish why the ABCG subfamily proteins proliferated extensively during evolution, we constructed phylogenetic trees from a broad range of eukaryotic organisms. ABCG proteins were massively duplicated in land plants and in oomycetes, a group of agronomically important plant pathogens, which prompted us to hypothesize that plant and pathogen ABCGs coevolved. Supporting this hypothesis, full-size ABCGs in host plants (Arabidopsis thaliana and Glycine max) and their pathogens (Hyaloperonospora arabidopsidis and Phytophthora sojae, respectively) had similar divergence times and patterns. Furthermore, generalist pathogens with broad ranges of host plants have diversified more ABCGs than their specialist counterparts. The hypothesis was further tested using an example pair of ABCGs that first diverged during multiplication in a host plant and its pathogen: AtABCG31 of A. thaliana and HpaP802307 of H. arabidopsidis. AtABCG31 expression was activated following infection with H. arabidopsidis, and disrupting AtABCG31 led to increased susceptibility to H. arabidopsidis. Together, our results suggest that ABCG genes in plants and their oomycete pathogens coevolved in an arms race, to extrude secondary metabolites involved in the plant's defense response against pathogens.


Assuntos
Regulação da Expressão Gênica de Plantas , Oomicetos , Subfamília G de Transportadores de Cassetes de Ligação de ATP , Análise por Conglomerados , Interações Hospedeiro-Patógeno , Filogenia , Doenças das Plantas/genética
12.
Nucleic Acids Res ; 47(16): e94, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31199866

RESUMO

Genome-wide association studies have discovered a large number of genetic variants in human patients with the disease. Thus, predicting the impact of these variants is important for sorting disease-associated variants (DVs) from neutral variants. Current methods to predict the mutational impacts depend on evolutionary conservation at the mutation site, which is determined using homologous sequences and based on the assumption that variants at well-conserved sites have high impacts. However, many DVs at less-conserved but functionally important sites cannot be predicted by the current methods. Here, we present a method to find DVs at less-conserved sites by predicting the mutational impacts using evolutionary coupling analysis. Functionally important and evolutionarily coupled sites often have compensatory variants on cooperative sites to avoid loss of function. We found that our method identified known intolerant variants in a diverse group of proteins. Furthermore, at less-conserved sites, we identified DVs that were not identified using conservation-based methods. These newly identified DVs were frequently found at protein interaction interfaces, where species-specific mutations often alter interaction specificity. This work presents a means to identify less-conserved DVs and provides insight into the relationship between evolutionarily coupled sites and human DVs.


Assuntos
Algoritmos , Doenças Cardiovasculares/genética , Doenças do Sistema Endócrino/genética , Oftalmopatias/genética , Doenças Hematológicas/genética , Doenças Metabólicas/genética , Neoplasias/genética , Doenças do Sistema Nervoso/genética , Sequência de Aminoácidos , Evolução Biológica , Doenças Cardiovasculares/diagnóstico , Sequência Conservada , Bases de Dados de Proteínas , Doenças do Sistema Endócrino/diagnóstico , Oftalmopatias/diagnóstico , Predisposição Genética para Doença , Genoma Humano , Estudo de Associação Genômica Ampla , Doenças Hematológicas/diagnóstico , Humanos , Doenças Metabólicas/diagnóstico , Mutação , Neoplasias/diagnóstico , Doenças do Sistema Nervoso/diagnóstico , Análise de Componente Principal , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
13.
Cancer Cell Int ; 20: 42, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32042269

RESUMO

BACKGROUND: Although major driver gene mutations have been identified, the complex molecular heterogeneity of colorectal cancer (CRC) remains unclear. Capicua (CIC) functions as a tumor suppressor in various types of cancers; however, its role in CRC progression has not been examined. METHODS: Databases for gene expression profile in CRC patient samples were used to evaluate the association of the levels of CIC and Polyoma enhancer activator 3 (PEA3) group genes (ETS translocation variant 1 (ETV1), ETV4, and ETV5), the best-characterized CIC targets in terms of CIC functions, with clinicopathological features of CRC. CIC and ETV4 protein levels were also examined in CRC patient tissue samples. Gain- and loss-of function experiments in cell lines and mouse xenograft models were performed to investigate regulatory functions of CIC and ETV4 in CRC cell growth and invasion. qRT-PCR and western blot analyses were performed to verify the CIC regulation of ETV4 expression in CRC cells. Rescue experiments were conducted using siRNA against ETV4 and CIC-deficient CRC cell lines. RESULTS: CIC expression was decreased in the tissue samples of CRC patients. Cell invasion, migration, and proliferation were enhanced in CIC-deficient CRC cells and suppressed in CIC-overexpressing cells. Among PEA3 group genes, ETV4 levels were most dramatically upregulated and inversely correlated with the CIC levels in CRC patient samples. Furthermore, derepression of ETV4 was more prominent in CIC-deficient CRC cells, when compared with that observed for ETV1 and ETV5. The enhanced cell proliferative and invasive capabilities in CIC-deficient CRC cells were completely recovered by knockdown of ETV4. CONCLUSION: Collectively, the CIC-ETV4 axis is not only a key module that controls CRC progression but also a novel therapeutic and/or diagnostic target for CRC.

14.
Mol Biol Evol ; 35(7): 1653-1667, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29697819

RESUMO

Mice have been widely used as a model organism to investigate human gene-phenotype relationships based on a conjecture that orthologous genes generally perform similar functions and are associated with similar phenotypes. However, phenotypes associated with orthologous genes often turn out to be quite different between human and mouse. Herein, we devised a method to quantitatively compare phenotypes annotations associated with mouse models and human. Using semantic similarity comparisons, we identified orthologous genes with different phenotype annotations, of which the similarity score is on a par with that of random gene pairs. Analysis of sequence evolution and transcriptomic changes revealed that orthologous genes with phenotypic differences are correlated with changes in noncoding regulatory elements and tissue-specific expression profiles rather than changes in protein-coding sequences. To map accurate gene-phenotype relationships using model organisms, we propose that careful consideration of the evolutionary divergence of noncoding regulatory elements and transcriptomic profiles is essential.


Assuntos
Evolução Molecular , Fenótipo , Elementos Reguladores de Transcrição , Animais , Técnicas Genéticas , Humanos , Camundongos , Transcriptoma
15.
Clin Immunol ; 207: 79-86, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31349012

RESUMO

Sjogren's syndrome (SS), a chronic autoimmune disease, typically causes or involves inflammation in the salivary and lacrimal glands. Although recent genetic association studies have contributed to the discovery of SS susceptible genes, few studies have reported on the Korean population. Here, we did a genetic association study of SS in Korean patients using whole-exome sequencing data of 15 patients and 100 healthy controls. In addition to confirming previously described SS susceptibility loci MSH5 (p = 1.67 × 10-5) and RELN (p = 4.91 × 10-6), we also validated PRAMEF13 (p = 2.28 × 10-5), TARBP1 (p = 1.87 × 10-5), UGT2B28 (p = 1.33 × 10-5), TRBV5-6 (p = 2.27 × 10-5) and NAPB (p = 3.73 × 10-5) as novel susceptibility loci for SS. Furthermore, we identified UGT2B28, TARBP1 and PRAMEF13 as associated with human immune function. These findings may provide useful insight into to the pathways and pathogenesis contributing to SS susceptibility in the Korean population.


Assuntos
Povo Asiático , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Síndrome de Sjogren/epidemiologia , Síndrome de Sjogren/genética , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Proteína Reelina , República da Coreia/epidemiologia
16.
Hepatology ; 67(6): 2287-2301, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29251790

RESUMO

Hepatocellular carcinoma (HCC) is developed by multiple steps accompanying progressive alterations of gene expression, which leads to increased cell proliferation and malignancy. Although environmental factors and intracellular signaling pathways that are critical for HCC progression have been identified, gene expression changes and the related genetic factors contributing to HCC pathogenesis are still insufficiently understood. In this study, we identify a transcriptional repressor, Capicua (CIC), as a suppressor of HCC progression and a potential therapeutic target. Expression of CIC is posttranscriptionally reduced in HCC cells. CIC levels are correlated with survival rates in patients with HCC. CIC overexpression suppresses HCC cell proliferation and invasion, whereas loss of CIC exerts opposite effects in vivo as well as in vitro. Levels of polyoma enhancer activator 3 (PEA3) group genes, the best-known CIC target genes, are correlated with lethality in patients with HCC. Among the PEA3 group genes, ETS translocation variant 4 (ETV4) is the most significantly up-regulated in CIC-deficient HCC cells, consequently promoting HCC progression. Furthermore, it induces expression of matrix metalloproteinase 1 (MMP1), the MMP gene highly relevant to HCC progression, in HCC cells; and knockdown of MMP1 completely blocks the CIC deficiency-induced HCC cell proliferation and invasion. CONCLUSION: Our study demonstrates that the CIC-ETV4-MMP1 axis is a regulatory module controlling HCC progression. (Hepatology 2018;67:2287-2301).


Assuntos
Proteínas E1A de Adenovirus/fisiologia , Carcinoma Hepatocelular/etiologia , Neoplasias Hepáticas/etiologia , Metaloproteinase 1 da Matriz/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Repressoras/fisiologia , Animais , Progressão da Doença , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-ets
17.
Oral Dis ; 25(5): 1374-1383, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30907493

RESUMO

OBJECTIVE: Hereditary gingival fibromatosis (HGF) is a rare oral disease characterized by either localized or generalized gradual, benign, non-hemorrhagic enlargement of gingivae. Although several genetic causes of HGF are known, the genetic etiology of HGF as a non-syndromic and idiopathic entity remains uncertain. SUBJECTS AND METHODS: We performed exome and RNA-seq of idiopathic HGF patients and controls, and then devised a computational framework that specifies exomic/transcriptomic alterations interconnected by a regulatory network to unravel genetic etiology of HGF. Moreover, given the lack of animal model or large-scale cohort data of HGF, we developed a strategy to cross-check their clinical relevance through in silico gene-phenotype mapping with biomedical literature mining and semantic analysis of disease phenotype similarities. RESULTS: Exomic variants and differentially expressed genes of HGF were connected by members of TGF-ß/SMAD signaling pathway and craniofacial development processes, accounting for the molecular mechanism of fibroblast overgrowth mimicking HGF. Our cross-check supports that genes derived from the regulatory network analysis have pathogenic roles in fibromatosis-related diseases. CONCLUSIONS: The computational approach of connecting exomic and transcriptomic alterations through regulatory networks is applicable in the clinical interpretation of genetic variants in HGF patients.


Assuntos
Exoma , Fibromatose Gengival/genética , Transcriptoma , Fibroblastos , Gengiva , Humanos
18.
Biochim Biophys Acta Mol Cell Res ; 1864(1): 1-11, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27751885

RESUMO

Members of the herpesviral family use multiple strategies to hijack infected host cells and exploit cellular signaling for their pathogenesis and latent infection. Among the most intriguing weapons in the arsenal of pathogenic herpesviruses are the constitutively active virally-encoded G protein-coupled receptors (vGPCRs). Even though vGPCRs contribute to viral pathogenesis such as immune evasion and proliferative disorders, the molecular details of how vGPCRs continuously activate cellular signaling are largely unknown. Here, we report that the vGPCR of Herpesvirus saimiri (HVS), an oncogenic γ2-herpesvirus, constitutively activates T cells via a heteromeric interaction with cellular CXCR4. Constitutive T cell activation also occurs with expression of the vGPCR of Kaposi's sarcoma-associated herpesvirus (KSHV), but not the vGPCR of Epstein-Barr virus. Expression of HVS vGPCR down-regulated the surface expression of CXCR4 but did not induce the degradation of the chemokine receptor, suggesting that vGPCR/CXCR4 signaling continues in cytosolic compartments. The physical association of vGPCR with CXCR4 was demonstrated by proximity ligation assay as well as immunoprecipitation. Interestingly, the constitutive activation of T cells by HVS vGPCR is independent of proximal T cell receptor (TCR) signaling molecules, such as TCRß, Lck, and ZAP70, whereas CXCR4 silencing by shRNA abolished T cell activation by vGPCRs of HVS and KSHV. Furthermore, previously identified inactive vGPCR mutants failed to interact with CXCR4. These findings on the positive cooperativity of vGPCR with cellular CXCR4 in T cell activation extend our current understanding of the molecular mechanisms of vGPCR function and highlight the importance of heteromerization for GPCR activity.


Assuntos
Herpesvirus Saimiriíneo 2/metabolismo , Herpesvirus Humano 8/metabolismo , Receptores CXCR4/genética , Receptores de Quimiocinas/genética , Linfócitos T/virologia , Regulação da Expressão Gênica , Células HEK293 , Herpesvirus Saimiriíneo 2/genética , Herpesvirus Saimiriíneo 2/crescimento & desenvolvimento , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/crescimento & desenvolvimento , Herpesvirus Humano 4/metabolismo , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno , Humanos , Ativação Linfocitária , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/imunologia , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Cultura Primária de Células , Ligação Proteica , Multimerização Proteica , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Receptores CXCR4/imunologia , Receptores CXCR4/metabolismo , Receptores de Quimiocinas/imunologia , Receptores de Quimiocinas/metabolismo , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/metabolismo , Proteína-Tirosina Quinase ZAP-70/genética , Proteína-Tirosina Quinase ZAP-70/imunologia , Proteína-Tirosina Quinase ZAP-70/metabolismo
19.
Proc Natl Acad Sci U S A ; 112(31): E4246-55, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26195740

RESUMO

The homeostatic maintenance of the genomic DNA is crucial for regulating aging processes. However, the role of RNA homeostasis in aging processes remains unknown. RNA helicases are a large family of enzymes that regulate the biogenesis and homeostasis of RNA. However, the functional significance of RNA helicases in aging has not been explored. Here, we report that a large fraction of RNA helicases regulate the lifespan of Caenorhabditis elegans. In particular, we show that a DEAD-box RNA helicase, helicase 1 (HEL-1), promotes longevity by specifically activating the DAF-16/forkhead box O (FOXO) transcription factor signaling pathway. We find that HEL-1 is required for the longevity conferred by reduced insulin/insulin-like growth factor 1 (IGF-1) signaling (IIS) and is sufficient for extending lifespan. We further show that the expression of HEL-1 in the intestine and neurons contributes to longevity. HEL-1 enhances the induction of a large fraction of DAF-16 target genes. Thus, the RNA helicase HEL-1 appears to promote longevity in response to decreased IIS as a transcription coregulator of DAF-16. Because HEL-1 and IIS are evolutionarily well conserved, a similar mechanism for longevity regulation via an RNA helicase-dependent regulation of FOXO signaling may operate in mammals, including humans.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Longevidade , RNA Helicases/metabolismo , Transdução de Sinais , Animais , Sequência de Bases , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Fatores de Transcrição Forkhead/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Genes de Helmintos , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Mucosa Intestinal/metabolismo , Dados de Sequência Molecular , Mutação/genética , Neurônios/metabolismo , Ligação Proteica , RNA Helicases/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor de Insulina/metabolismo , Reprodução , Análise de Sequência de RNA , Regulação para Cima
20.
Proc Natl Acad Sci U S A ; 111(42): E4458-67, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25288734

RESUMO

Mild inhibition of mitochondrial respiration extends the lifespan of many species. In Caenorhabditis elegans, reactive oxygen species (ROS) promote longevity by activating hypoxia-inducible factor 1 (HIF-1) in response to reduced mitochondrial respiration. However, the physiological role and mechanism of ROS-induced longevity are poorly understood. Here, we show that a modest increase in ROS increases the immunity and lifespan of C. elegans through feedback regulation by HIF-1 and AMP-activated protein kinase (AMPK). We found that activation of AMPK as well as HIF-1 mediates the longevity response to ROS. We further showed that AMPK reduces internal levels of ROS, whereas HIF-1 amplifies the levels of internal ROS under conditions that increase ROS. Moreover, mitochondrial ROS increase resistance to various pathogenic bacteria, suggesting a possible association between immunity and long lifespan. Thus, AMPK and HIF-1 may control immunity and longevity tightly by acting as feedback regulators of ROS.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Retroalimentação Fisiológica , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo , Envelhecimento , Animais , Caenorhabditis elegans/imunologia , Respiração Celular , Homeostase , Ferro/química , Longevidade/fisiologia , Mitocôndrias/metabolismo , Mutação , Paraquat/química , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA