Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(50): 31665-31673, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33257543

RESUMO

Fingerprints are unique to primates and koalas but what advantages do these features of our hands and feet provide us compared with the smooth pads of carnivorans, e.g., feline or ursine species? It has been argued that the epidermal ridges on finger pads decrease friction when in contact with smooth surfaces, promote interlocking with rough surfaces, channel excess water, prevent blistering, and enhance tactile sensitivity. Here, we found that they were at the origin of a moisture-regulating mechanism, which ensures an optimal hydration of the keratin layer of the skin for maximizing the friction and reducing the probability of catastrophic slip due to the hydrodynamic formation of a fluid layer. When in contact with impermeable surfaces, the occlusion of the sweat from the pores in the ridges promotes plasticization of the skin, dramatically increasing friction. Occlusion and external moisture could cause an excess of water that would defeat the natural hydration balance. However, we have demonstrated using femtosecond laser-based polarization-tunable terahertz wave spectroscopic imaging and infrared optical coherence tomography that the moisture regulation may be explained by a combination of a microfluidic capillary evaporation mechanism and a sweat pore blocking mechanism. This results in maintaining an optimal amount of moisture in the furrows that maximizes the friction irrespective of whether a finger pad is initially wet or dry. Thus, abundant low-flow sweat glands and epidermal furrows have provided primates with the evolutionary advantage in dry and wet conditions of manipulative and locomotive abilities not available to other animals.


Assuntos
Dedos/anatomia & histologia , Força da Mão/fisiologia , Locomoção/fisiologia , Atividade Motora/fisiologia , Primatas/fisiologia , Adulto , Animais , Evolução Biológica , Dermatoglifia , Dedos/diagnóstico por imagem , Dedos/fisiologia , Fricção , Humanos , Masculino , Microfluídica , Suor/química , Suor/metabolismo , Glândulas Sudoríparas/química , Glândulas Sudoríparas/metabolismo , Tomografia de Coerência Óptica
2.
Opt Express ; 30(3): 3443-3454, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35209602

RESUMO

Controlling the line shape of Fano resonance has continued to attract significant research attention in recent years owing to its practical applications such as lasing, biosensing, and slow-light devices. However, controllable Fano resonances always require stringent alignment of complex symmetry-breaking structures; therefore, the manipulation can only be performed with limited degrees of freedom and a narrow tuning range. This work demonstrates dark-mode excitation tuning independent of the bright mode for the first time, to the authors' knowledge, in asymmetric Fano metamaterials. Metallic subwavelength slits are arranged to form asymmetric unit cells and generate a broad and bright (radiative) Fabry-Perot mode and a sharp and dark (non-radiative) surface mode. The introduction of the independent radial and angular asymmetries realizes independent control of the Fano phase (q) and quality factor (Q). This tunability provides a dynamic phase shift while maintaining a high-quality factor, enabling switching between nearly perfect transmission and absorption, which is confirmed both numerically and experimentally. The proposed scheme for fully controlled Fano systems can aid practical applications such as phase-sensitive switching devices.

3.
Chemphyschem ; 21(20): 2334-2346, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32866322

RESUMO

We present an atomistic simulation scheme for the determination of the hydration number (h) of aqueous electrolyte solutions based on the calculation of the water dipole reorientation dynamics. In this methodology, the time evolution of an aqueous electrolyte solution generated from ab initio molecular dynamics simulations is used to compute the reorientation time of different water subpopulations. The value of h is determined by considering whether the reorientation time of the water subpopulations is retarded with respect to bulk-like behavior. The application of this computational protocol to magnesium chloride (MgCl2 ) solutions at different concentrations (0.6-2.8 mol kg-1 ) gives h values in excellent agreement with experimental hydration numbers obtained using GHz-to-THz dielectric relaxation spectroscopy. This methodology is attractive because it is based on a well-defined criterion for the definition of hydration number and provides a link with the molecular-level processes responsible for affecting bulk solution behavior. Analysis of the ab initio molecular dynamics trajectories using radial distribution functions, hydrogen bonding statistics, vibrational density of states, water-water hydrogen bonding lifetimes, and water dipole reorientation reveals that MgCl2 has a considerable influence on the hydrogen bond network compared with bulk water. These effects have been assigned to the specific strong Mg-water interaction rather than the Cl-water interaction.

4.
Phys Chem Chem Phys ; 22(28): 16301-16313, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32647838

RESUMO

We present an ab initio molecular dynamics study of the alkali metal ions Li+, Na+, K+ and Cs+, and of the alkaline earth metal ions Mg2+ and Ca2+ in both pure water and electrolyte solutions containing the counterions Cl- and SO42-. Simulations were conducted using different density functional theory methods (PBE, BLYP and revPBE), with and without the inclusion of dispersion interactions (-D3). Analysis of the ion-water structure and interaction strength, water exchange between the first and second hydration shell, and hydrogen bond network and low-frequency reorientation dynamics around the metal ions have been used to characterise the influence of solution composition on the ionic solvation shell. Counterions affect the properties of the hydration shell not only when they are directly coordinated to the metal ion, but also when they are at the second coordination shell. Chloride ions reduce the sodium hydration shell and expand the calcium hydration shell by stabilizing under-coordinated hydrated Na(H2O)5+ complexes and over-coordinated Ca(H2O)72+. The same behaviour is observed in CaSO4(aq), where Ca2+ and SO42- form almost exclusively solvent-shared ion pairs. Water exchange between the first and second hydration shell around Ca2+ in CaSO4(aq) is drastically decelerated compared with the simulations of the hydrated metal ion (single Ca2+, no counterions). Velocity autocorrelation function analysis, used to probe the strength of the local ion-water interaction, shows a smoother decay of Mg2+ in MgCl2(aq), which is a clear indication of a looser inter-hexahedral vibration in the presence of chloride ions located in the second coordination shell of Mg2+. The hydrogen bond statistics and orientational dynamics in the ionic solvation shell show that the influence on the water-water network cannot only be ascribed to the specific cation-water interaction, but also to the subtle interplay between the level of hydration of the ions, and the interactions between ions, especially those of opposite charge. As many reactive processes involving solvated metal ions occur in environments that are far from pure water but rich in ions, this computational study shows how the solution composition can result in significant differences in behaviour and function of the ionic solvation shell.

5.
Nat Commun ; 15(1): 4457, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796451

RESUMO

Coating building envelopes with a passive daytime radiative cooling (PDRC) material has attracted enormous attention as an alternative cooling technique with minimal energy consumption and carbon footprint. Despite the exceptional performance and scalability of porous polymer coating (PPC), achieving consistent performance over a wide range of drying environments remains a major challenge for its commercialization as a radiative cooling paint. Herein, we demonstrate the humidity vulnerability of PPC during the drying process and propose a simple strategy to greatly mitigate the issue. Specifically, we find that the solar reflectance of the PPC rapidly decreases with increasing humidity from 30% RH, and the PPC completely losses its PDRC ability at 45% RH and even become a solar-heating material at higher humidity. However, by adding a small amount of polymer reinforcement to the PPC, it maintains its PDRC performance up to 60% RH, resulting in a 950% increase in estimated areal coverage compared to PPC in the United States. This study sheds light on a crucial consistency issue that has thus far been rarely addressed, and offers engineering guidance to handle this fundamental threat to the development of dependable PDRC paint for industrial applications.

6.
Struct Dyn ; 10(4): 044302, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37577135

RESUMO

The direct observation of the structure of micrometer-sized vapor-deposited ice is performed at Pohang Accelerator Laboratory x-ray free electron laser (PAL-XFEL). The formation of micrometer-sized ice crystals and their structure is important in various fields, including atmospheric science, cryobiology, and astrophysics, but understanding the structure of micrometer-sized ice crystals remains challenging due to the lack of direct observation. Using intense x-ray diffraction from PAL-XFEL, we could observe the structure of micrometer-sized vapor-deposited ice below 150 K with a thickness of 2-50 µm grown in an ultrahigh vacuum chamber. The structure of the ice grown comprises cubic and hexagonal sequences that are randomly arranged to produce a stacking-disordered ice. We observed that ice with a high cubicity of more than 80% was transformed to partially oriented hexagonal ice when the thickness of the ice deposition grew beyond 5 µm. This suggests that precise temperature control and clean deposition conditions allow µm-thick ice films with high cubicity to be grown on hydrophilic Si3N4 membranes. The low influence of impurities could enable in situ diffraction experiments of ice nucleation and growth from interfacial layers to bulk ice.

7.
Front Aging Neurosci ; 14: 892590, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313025

RESUMO

Quantitative electroencephalography (QEEG) has proven useful in predicting the response to various treatments, but, until now, no study has investigated changes in functional connectivity using QEEG following a lifestyle intervention program. We aimed to investigate neurophysiological changes in QEEG after a 24-week multidomain lifestyle intervention program in the SoUth Korean study to PrEvent cognitive impaiRment and protect BRAIN health through lifestyle intervention in at-risk elderly people (SUPERBRAIN). Participants without dementia and with at least one modifiable dementia risk factor, aged 60-79 years, were randomly assigned to the facility-based multidomain intervention (FMI) (n = 51), the home-based multidomain intervention (HMI) (n = 51), and the control group (n = 50). The analysis of this study included data from 44, 49, and 34 participants who underwent EEG at baseline and at the end of the study in the FMI, HMI, and control groups, respectively. The spectrum power and power ratio of EEG were calculated. Source cortical current density and functional connectivity were estimated by standardized low-resolution brain electromagnetic tomography. Participants who received the intervention showed increases in the power of the beta1 and beta3 bands and in the imaginary part of coherence of the alpha1 band compared to the control group. Decreases in the characteristic path lengths of the alpha1 band in the right supramarginal gyrus and right rostral middle frontal cortex were observed in those who received the intervention. This study showed positive biological changes, including increased functional connectivity and higher global efficiency in QEEG after a multidomain lifestyle intervention. Clinical trial registration: [https://clinicaltrials.gov/ct2/show/NCT03980392] identifier [NCT03980392].

8.
Front Vet Sci ; 8: 762961, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926639

RESUMO

The management of canine atopic dermatitis, an allergic skin disorder, is challenging. To investigate the effect of phototherapy using a 308-nm excimer light as a topical treatment for canine atopic dermatitis, 10 dogs with canine atopic dermatitis and 10 with non-allergic skin were enrolled in this study. Phototherapy was applied every 7 days for a total of 2 months. The skin microbiome, skin barrier function, and clinical outcomes were evaluated after phototherapy. Phototherapy significantly changed the composition of the skin microbiome of dogs with atopic dermatitis and significantly increased the relative abundance of the phyla Actinobacteria and Cyanobacteria. It significantly alleviated the clinical signs of canine atopic dermatitis without serious adverse effects. Transepidermal water loss, as a measure of skin barrier function, significantly decreased after phototherapy. In addition, phototherapy increased microbial diversity and decreased the relative abundance of Staphylococcus pseudintermedius associated with the severity of canine atopic dermatitis. These results suggest that the excimer light therapy is a suitable and safe therapeutic option for canine atopic dermatitis, which is also a spontaneous animal model of atopic dermatitis.

9.
Rev Sci Instrum ; 91(11): 113306, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33261443

RESUMO

Versatile high-power pulsed electron-beam accelerators that meet the requirements of pulsed high-power specifications are needed for appropriate applications in medical industry, defense, and other industries. The pulsed electron beam accelerator comprising a Marx generator and Blumlein pulse forming line (PFL) is designed to accelerate the electron beams at the level of 1 MeV when electrostatically discharging. The performance specifications of Marx generators consisting of a 100 kV DC power supply, R-L-C circuit, and high voltage switch are at a maximum 800 kV. At this time, by using the capacitance mismatching principle between the Marx generator and the Blumlein PFL under the law of preserving the amount of charge, it is possible to generate a high voltage in the form of a square pulse up to about 1.1 MV, as much as 1.37 times the charged voltage of the Marx generator. As a result, energy transmission from the Marx generator with a high efficiency of about 85% to the Blumlein PFL is possible. The aim of this study is that the pulsed high-power electron-beam accelerator can be used to change the diode impedance, and the energy of the accelerated electron beam reaches a level of 1 MeV with the square pulse width of about 100 ns at the flat-top in the range of relativistic electron beam generation. Performance tests were securely carried out by installing a dummy load based on CuSO4 solution varying the diode impedance to deter damage to the circuit by preventing reflected waves from being generated in the load.

10.
J Mol Cell Biol ; 10(3): 180-194, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29579284

RESUMO

Apoptosis and hypertrophy of cardiomyocytes are the primary causes of heart failure (HF), a global leading cause of death, and are regulated through the complicated intracellular signaling network, limiting the development of effective treatments due to its complexity. To identify effective therapeutic strategies for HF at a system level, we develop a large-scale comprehensive mathematical model of the cardiac signaling network by integrating all available experimental evidence. Attractor landscape analysis of the network model identifies distinct sets of control nodes that effectively suppress apoptosis and hypertrophy of cardiomyocytes under ischemic or pressure overload-induced HF, the two major types of HF. Intriguingly, our system-level analysis suggests that intervention of these control nodes may increase the efficacy of clinical drugs for HF and, of most importance, different combinations of control nodes are suggested as potentially effective candidate drug targets depending on the types of HF. Our study provides a systematic way of developing mechanism-based therapeutic strategies for HF.


Assuntos
Apoptose , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , Mapas de Interação de Proteínas , Transdução de Sinais , Animais , Simulação por Computador , Descoberta de Drogas , Insuficiência Cardíaca/patologia , Humanos , Modelos Cardiovasculares , Miócitos Cardíacos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA