Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 373
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(2): 422-440.e17, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33450207

RESUMO

Itch is an evolutionarily conserved sensation that facilitates expulsion of pathogens and noxious stimuli from the skin. However, in organ failure, cancer, and chronic inflammatory disorders such as atopic dermatitis (AD), itch becomes chronic, intractable, and debilitating. In addition to chronic itch, patients often experience intense acute itch exacerbations. Recent discoveries have unearthed the neuroimmune circuitry of itch, leading to the development of anti-itch treatments. However, mechanisms underlying acute itch exacerbations remain overlooked. Herein, we identify that a large proportion of patients with AD harbor allergen-specific immunoglobulin E (IgE) and exhibit a propensity for acute itch flares. In mice, while allergen-provoked acute itch is mediated by the mast cell-histamine axis in steady state, AD-associated inflammation renders this pathway dispensable. Instead, a previously unrecognized basophil-leukotriene (LT) axis emerges as critical for acute itch flares. By probing fundamental itch mechanisms, our study highlights a basophil-neuronal circuit that may underlie a variety of neuroimmune processes.


Assuntos
Basófilos/patologia , Neurônios/patologia , Prurido/patologia , Doença Aguda , Alérgenos/imunologia , Animais , Doença Crônica , Dermatite Atópica/imunologia , Dermatite Atópica/patologia , Modelos Animais de Doenças , Histamina/metabolismo , Humanos , Imunoglobulina E/imunologia , Inflamação/patologia , Leucotrienos/metabolismo , Mastócitos/imunologia , Camundongos Endogâmicos C57BL , Fenótipo , Prurido/imunologia , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPV/metabolismo
2.
Nat Immunol ; 17(11): 1252-1262, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27595231

RESUMO

The mammalian cytoplasmic multi-tRNA synthetase complex (MSC) is a depot system that regulates non-translational cellular functions. Here we found that the MSC component glutamyl-prolyl-tRNA synthetase (EPRS) switched its function following viral infection and exhibited potent antiviral activity. Infection-specific phosphorylation of EPRS at Ser990 induced its dissociation from the MSC, after which it was guided to the antiviral signaling pathway, where it interacted with PCBP2, a negative regulator of mitochondrial antiviral signaling protein (MAVS) that is critical for antiviral immunity. This interaction blocked PCBP2-mediated ubiquitination of MAVS and ultimately suppressed viral replication. EPRS-haploid (Eprs+/-) mice showed enhanced viremia and inflammation and delayed viral clearance. This stimulus-inducible activation of MAVS by EPRS suggests an unexpected role for the MSC as a regulator of immune responses to viral infection.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Resistência à Doença/imunologia , Interações Hospedeiro-Patógeno/imunologia , Viroses/imunologia , Viroses/metabolismo , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Animais , Antivirais/farmacologia , Modelos Animais de Doenças , Imunidade Inata , Camundongos , Camundongos Knockout , Peptídeos/farmacologia , Fosforilação , Ligação Proteica , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/metabolismo , Infecções por Vírus de RNA/virologia , Vírus de RNA/efeitos dos fármacos , Vírus de RNA/imunologia , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Ubiquitinação , Viroses/virologia , Replicação Viral
3.
Nucleic Acids Res ; 51(20): 11178-11196, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37850636

RESUMO

Von Hippel-Lindau (VHL) is a tumor suppressor that functions as the substrate recognition subunit of the CRL2VHL E3 complex. While substrates of VHL have been identified, its tumor suppressive role remains to be fully understood. For further determination of VHL substrates, we analyzed the physical interactome of VHL and identified the histone H3K9 methyltransferase SETBD1 as a novel target. SETDB1 undergoes oxygen-dependent hydroxylation by prolyl hydroxylase domain proteins and the CRL2VHL complex recognizes hydroxylated SETDB1 for ubiquitin-mediated degradation. Under hypoxic conditions, SETDB1 accumulates by escaping CRL2VHL activity. Loss of SETDB1 in hypoxia compared with that in normoxia escalates the production of transposable element-derived double-stranded RNAs, thereby hyperactivating the immune-inflammatory response. In addition, strong derepression of TEs in hypoxic cells lacking SETDB1 triggers DNA damage-induced death. Our collective results support a molecular mechanism of oxygen-dependent SETDB1 degradation by the CRL2VHL E3 complex and reveal a role of SETDB1 in genome stability under hypoxia.


Assuntos
Instabilidade Genômica , Histona-Lisina N-Metiltransferase , Hipóxia , Humanos , Genes Supressores de Tumor , Histona-Lisina N-Metiltransferase/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Oxigênio/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
4.
BMC Genomics ; 25(1): 318, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549092

RESUMO

BACKGROUND: Detecting structural variations (SVs) at the population level using next-generation sequencing (NGS) requires substantial computational resources and processing time. Here, we compared the performances of 11 SV callers: Delly, Manta, GridSS, Wham, Sniffles, Lumpy, SvABA, Canvas, CNVnator, MELT, and INSurVeyor. These SV callers have been recently published and have been widely employed for processing massive whole-genome sequencing datasets. We evaluated the accuracy, sequence depth, running time, and memory usage of the SV callers. RESULTS: Notably, several callers exhibited better calling performance for deletions than for duplications, inversions, and insertions. Among the SV callers, Manta identified deletion SVs with better performance and efficient computing resources, and both Manta and MELT demonstrated relatively good precision regarding calling insertions. We confirmed that the copy number variation callers, Canvas and CNVnator, exhibited better performance in identifying long duplications as they employ the read-depth approach. Finally, we also verified the genotypes inferred from each SV caller using a phased long-read assembly dataset, and Manta showed the highest concordance in terms of the deletions and insertions. CONCLUSIONS: Our findings provide a comprehensive understanding of the accuracy and computational efficiency of SV callers, thereby facilitating integrative analysis of SV profiles in diverse large-scale genomic datasets.


Assuntos
Variações do Número de Cópias de DNA , Genômica , Humanos , Sequenciamento Completo do Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Genoma Humano , Variação Estrutural do Genoma
5.
J Am Chem Soc ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39079933

RESUMO

The difluoromethyl group (CF2H) serves as an essential bioisostere in drug discovery campaigns according to Lipinski's Rule of 5 due to its advantageous combination of lipophilicity and hydrogen bonding ability, thereby improving the ADME properties. However, despite the high prevalence and importance of vicinal hydrogen bond donors in pharmaceutical agents, a general synthetic method for doubly difluoromethylated compounds in the vicinal position is absent. Here we describe a copper-electrocatalyzed strategy that enables the vicinal bis(difluoromethylation) of alkenes. By leveraging electrochemistry to oxidize Zn(CF2H)2(DMPU)2-a conventionally utilized anionic transmetalating source, we paved a way to utilize it as a CF2H radical source to deliver the CF2H group in the terminal position of alkenes. Mechanistic studies revealed that the interception of the resultant secondary radical by a copper catalyst and subsequent reductive elimination is facilitated by invoking the Cu(III) intermediate, enabling the second installation of the CF2H group in the internal position. The utility of this electrocatalytic 1,2-bis(difluoromethylation) strategy has been highlighted through the late-stage bioisosteric replacement of pharmaceutical agents such as sotalol and dipivefrine.

6.
PLoS Pathog ; 18(12): e1011028, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36584235

RESUMO

Listeria monocytogenes (Lm) is a food-borne pathogen that causes severe bacterial gastroenteritis, with high rates of hospitalization and mortality. Lm is ubiquitous in soil, water and livestock, and can survive and proliferate at low temperatures. Following oral ingestion of contaminated food, Lm crosses the epithelium through intestinal goblet cells in a mechanism mediated by Lm InlA binding host E-cadherin. Importantly, human infections typically occur with Lm growing at or below room temperature, which is flagellated and motile. Even though many important human bacterial pathogens are flagellated, little is known regarding the effect of Lm motility on invasion and immune evasion. Here, we used complementary imaging and computer modeling approaches to test the hypothesis that bacterial motility helps Lm locate and engage target cells permissive for invasion. Imaging explanted mouse and human intestine, we showed that Lm grown at room temperature uses motility to scan the epithelial surface and preferentially attach to target cells. Furthermore, we integrated quantitative parameters from our imaging experiments to construct a versatile "layered" cellular Potts model (L-CPM) that simulates host-pathogen dynamics. Simulated data are consistent with the hypothesis that bacterial motility enhances invasion by allowing bacteria to search the epithelial surface for their preferred invasion targets. Indeed, our model consistently predicts that motile bacteria invade twice as efficiently over the first hour of infection. We also examined how bacterial motility affected interactions with host cellular immunity. In a mouse model of persistent infection, we found that neutrophils migrated to the apical surface of the epithelium 5 hours post infection and interacted with Lm. Yet in contrast to the view that neutrophils "hunt" for bacteria, we found that these interactions were driven by motility of Lm-which moved at least ~50x faster than neutrophils. Furthermore, our L-CPM predicts that motile bacteria maintain their invasion advantage even in the presence of host phagocytes, with the balance between invasion and phagocytosis governed almost entirely by bacterial motility. In conclusion, our simulations provide insight into host pathogen interaction dynamics at the intestinal epithelial barrier early during infection.


Assuntos
Enteropatias , Listeria monocytogenes , Listeria , Listeriose , Camundongos , Animais , Humanos , Proteínas de Bactérias/metabolismo , Intestinos/microbiologia
7.
Mol Psychiatry ; 28(3): 1351-1364, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36434054

RESUMO

Spatial learning and memory flexibility are known to require long-term potentiation (LTP) and long-term depression (LTD), respectively, on a cellular basis. We previously showed that cyclin Y (CCNY), a synapse-remodeling cyclin, is a novel actin-binding protein and an inhibitory regulator of functional and structural LTP in vitro. In this study, we report that Ccny knockout (KO) mice exhibit enhanced LTP and weak LTD at Schaffer collateral-CA1 synapses in the hippocampus. In accordance with enhanced LTP, Ccny KO mice showed improved spatial learning and memory. However, although previous studies reported that normal LTD is necessary for memory flexibility, Ccny KO mice intriguingly showed improved memory flexibility, suggesting that weak LTD could exert memory flexibility when combined with enhanced LTP. At the molecular level, CCNY modulated spatial learning and memory flexibility by distinctively affecting the cofilin-actin signaling pathway in the hippocampus. Specifically, CCNY inhibited cofilin activation by original learning, but reversed such inhibition by reversal learning. Furthermore, viral-mediated overexpression of a phosphomimetic cofilin-S3E in hippocampal CA1 regions enhanced LTP, weakened LTD, and improved spatial learning and memory flexibility, thus mirroring the phenotype of Ccny KO mice. In contrast, the overexpression of a non-phosphorylatable cofilin-S3A in hippocampal CA1 regions of Ccny KO mice reversed the synaptic plasticity, spatial learning, and memory flexibility phenotypes observed in Ccny KO mice. Altogether, our findings demonstrate that LTP and LTD cooperatively regulate memory flexibility. Moreover, CCNY suppresses LTP while facilitating LTD in the hippocampus and negatively regulates spatial learning and memory flexibility through the control of cofilin-actin signaling, proposing CCNY as a learning regulator modulating both memorizing and forgetting processes.


Assuntos
Actinas , Aprendizagem Espacial , Camundongos , Animais , Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/metabolismo , Camundongos Knockout , Ciclinas/genética , Ciclinas/metabolismo , Fatores de Despolimerização de Actina/metabolismo
8.
Int J Mol Sci ; 25(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38892352

RESUMO

Blackberries (Rubus fruticosus), which are known to include a variety of bioactive substances, have been extensively studied for their antioxidant properties. Blackberries possess multiple health beneficial effects, including anti-inflammation, anti-atherosclerosis, anti-tumor and immunomodulatory activity. However, the potential biological effects and precise molecular mechanisms of the fermented extracts remain largely unexplored. In this research, we demonstrate the effect of blackberries fermented with Lactobacillus for addressing obesity. We investigated the effect of blackberries fermented by Lactobacillus on mice fed a high-fat (60% kcal) diet for 12 weeks. Fermented blackberry administration reduced the body weight and epididymal fat caused by a high-fat diet compared to the obese group. The triglyceride and total cholesterol, which are blood lipid indicators, and the levels of leptin, which is an insulin resistance indicator, were significantly increased in the obese group but were significantly decreased in the fermented blackberries-treated group. Additionally, the expression of adipogenesis marker proteins, such as CEBPα, PPAR-γ and SREBP-1, was significantly increased in the obese group, whereas it was decreased in the fermented blackberries-treated group. These results suggest that fermented blackberries have a protective effect against high-fat-diet-induced obesity by inhibiting adipogenesis and are a potential candidate for the treatment of obesity.


Assuntos
Adipogenia , Fármacos Antiobesidade , Dieta Hiperlipídica , Fermentação , Lactobacillus plantarum , Obesidade , PPAR gama , Rubus , Transdução de Sinais , Animais , Adipogenia/efeitos dos fármacos , Rubus/química , Camundongos , Obesidade/metabolismo , Fármacos Antiobesidade/farmacologia , Masculino , Dieta Hiperlipídica/efeitos adversos , PPAR gama/metabolismo , Transdução de Sinais/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Camundongos Endogâmicos C57BL , Leptina/metabolismo , Leptina/sangue , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Peso Corporal/efeitos dos fármacos
9.
PLoS Pathog ; 17(9): e1009493, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34555127

RESUMO

Listeria monocytogenes is an intracellular bacterium that elicits robust CD8+ T-cell responses. Despite the ongoing development of L. monocytogenes-based platforms as cancer vaccines, our understanding of how L. monocytogenes drives robust CD8+ T-cell responses remains incomplete. One overarching hypothesis is that activation of cytosolic innate pathways is critical for immunity, as strains of L. monocytogenes that are unable to access the cytosol fail to elicit robust CD8+ T-cell responses and in fact inhibit optimal T-cell priming. Counterintuitively, however, activation of known cytosolic pathways, such as the inflammasome and type I IFN, lead to impaired immunity. Conversely, production of prostaglandin E2 (PGE2) downstream of cyclooxygenase-2 (COX-2) is essential for optimal L. monocytogenes T-cell priming. Here, we demonstrate that vacuole-constrained L. monocytogenes elicit reduced PGE2 production compared to wild-type strains in macrophages and dendritic cells ex vivo. In vivo, infection with wild-type L. monocytogenes leads to 10-fold increases in PGE2 production early during infection whereas vacuole-constrained strains fail to induce PGE2 over mock-immunized controls. Mice deficient in COX-2 specifically in Lyz2+ or CD11c+ cells produce less PGE2, suggesting these cell subsets contribute to PGE2 levels in vivo, while depletion of phagocytes with clodronate abolishes PGE2 production completely. Taken together, this work demonstrates that optimal PGE2 production by phagocytes depends on L. monocytogenes access to the cytosol, suggesting that one reason cytosolic access is required to prime CD8+ T-cell responses may be to facilitate production of PGE2.


Assuntos
Células Dendríticas/imunologia , Dinoprostona/biossíntese , Dinoprostona/imunologia , Listeriose/imunologia , Macrófagos/imunologia , Animais , Células Dendríticas/metabolismo , Células Dendríticas/microbiologia , Feminino , Listeria monocytogenes/imunologia , Ativação Linfocitária/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
10.
BMC Microbiol ; 23(1): 336, 2023 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951857

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) is a multifactorial chronic inflammatory disease resulting from dysregulation of the mucosal immune response and gut microbiota. Crohn's disease (CD) and ulcerative colitis (UC) are difficult to distinguish, and differential diagnosis is essential for establishing a long-term treatment plan for patients. Furthermore, the abundance of mucosal bacteria is associated with the severity of the disease. This study aimed to differentiate and diagnose these two diseases using the microbiome and identify specific biomarkers associated with disease activity. RESULTS: Differences in the abundance and composition of the microbiome between IBD patients and healthy controls (HC) were observed. Compared to HC, the diversity of the gut microbiome in patients with IBD decreased; the diversity of the gut microbiome in patients with CD was significantly lower. Sixty-eight microbiota members (28 for CD and 40 for UC) associated with these diseases were identified. Additionally, as the disease progressed through different stages, the diversity of the bacteria decreased. The abundances of Alistipes shahii and Pseudodesulfovibrio aespoeensis were negatively correlated with the severity of CD, whereas the abundance of Polynucleobacter wianus was positively correlated. The severity of UC was negatively correlated with the abundance of A. shahii, Porphyromonas asaccharolytica and Akkermansia muciniphilla, while it was positively correlated with the abundance of Pantoea candidatus pantoea carbekii. A regularized logistic regression model was used for the differential diagnosis of the two diseases. The area under the curve (AUC) was used to examine the performance of the model. The model discriminated UC and CD at an AUC of 0.873 (train set), 0.778 (test set), and 0.633 (validation set) and an area under the precision-recall curve (PRAUC) of 0.888 (train set), 0.806 (test set), and 0.474 (validation set). CONCLUSIONS: Based on fecal whole-metagenome shotgun (WMS) sequencing, CD and UC were diagnosed using a machine-learning predictive model. Microbiome biomarkers associated with disease activity (UC and CD) are also proposed.


Assuntos
Colite Ulcerativa , Doença de Crohn , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Humanos , Colite Ulcerativa/terapia , Doença de Crohn/diagnóstico , Doença de Crohn/microbiologia , Doenças Inflamatórias Intestinais/microbiologia , Bactérias/genética , Biomarcadores
11.
Proc Natl Acad Sci U S A ; 117(29): 17142-17150, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32636256

RESUMO

Gut microbes play diverse roles in modulating host fitness, including longevity; however, the molecular mechanisms underlying their mediation of longevity remain poorly understood. We performed genome-wide screens using 3,792 Escherichia coli mutants and identified 44 E. coli mutants that modulated Caenorhabditis elegans longevity. Three of these mutants modulated C. elegans longevity via the bacterial metabolite methylglyoxal (MG). Importantly, we found that low MG-producing E. coli mutants, Δhns E. coli, extended the lifespan of C. elegans through activation of the DAF-16/FOXO family transcription factor and the mitochondrial unfolded protein response (UPRmt). Interestingly, the lifespan modulation by Δhns did not require insulin/insulin-like growth factor 1 signaling (IIS) but did require TORC2/SGK-1 signaling. Transcriptome analysis revealed that Δhns E. coli activated novel class 3 DAF-16 target genes that were distinct from those regulated by IIS. Taken together, our data suggest that bacteria-derived MG modulates host longevity through regulation of the host signaling pathways rather than through nonspecific damage on biomolecules known as advanced glycation end products. Finally, we demonstrate that MG enhances the phosphorylation of hSGK1 and accelerates cellular senescence in human dermal fibroblasts, suggesting the conserved role of MG in controlling longevity across species. Together, our studies demonstrate that bacteria-derived MG is a novel therapeutic target for aging and aging-associated pathophysiology.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans , Fatores de Transcrição Forkhead/metabolismo , Longevidade/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Aldeído Pirúvico , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiologia , Escherichia coli/metabolismo , Microbioma Gastrointestinal/fisiologia , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Modelos Biológicos , Aldeído Pirúvico/metabolismo , Aldeído Pirúvico/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/genética
12.
Genes Dev ; 29(15): 1605-17, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26215566

RESUMO

The myogenic capacity of myoblasts decreases in skeletal muscle with age. In addition to environmental factors, intrinsic factors are important for maintaining the regenerative potential of muscle progenitor cells, but their identities are largely unknown. Here, comparative analysis of microRNA (miRNA) expression profiles in young and old myoblasts uncovered miR-431 as a novel miRNA showing markedly reduced abundance in aged myoblasts. Importantly, elevating miR-431 improved the myogenic capacity of old myoblasts, while inhibiting endogenous miR-431 lowered myogenesis. Bioinformatic and biochemical analyses revealed that miR-431 directly interacted with the 3' untranslated region (UTR) of Smad4 mRNA, which encodes one of the downstream effectors of TGF-ß signaling. In keeping with the low levels of miR-431 in old myoblasts, SMAD4 levels increased in this myoblast population. Interestingly, in an in vivo model of muscle regeneration following cardiotoxin injury, ectopic miR-431 injection greatly improved muscle regeneration and reduced SMAD4 levels. Consistent with the finding that the mouse miR-431 seed sequence in the Smad4 3' UTR is conserved in the human SMAD4 3' UTR, inhibition of miR-431 also repressed the myogenic capacity of human skeletal myoblasts. Taken together, our results suggest that the age-associated miR-431 plays a key role in maintaining the myogenic ability of skeletal muscle with age.


Assuntos
Diferenciação Celular , MicroRNAs/metabolismo , Desenvolvimento Muscular/genética , Músculo Esquelético/fisiologia , Mioblastos/citologia , Regeneração/genética , Proteína Smad4/genética , Regiões 3' não Traduzidas , Animais , Linhagem Celular , Senescência Celular , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Músculo Esquelético/citologia , Ligação Proteica
13.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37511425

RESUMO

Cervi cornu extracts have been used in traditional medicine for the treatment of various disorders, including osteoporosis. However, since it is not easy to separate the active ingredients, limited research has been conducted on their functional properties. In this study, we extracted the low-molecular-weight (843 Da) collagen NP-2007 from cervi cornu by enzyme hydrolyzation to enhance absorption and evaluated the therapeutic effect in monosodium iodoacetate-induced rat osteoarthritis (OA) model. NP-2007 was orally administered at 50, 100, and 200 mg/kg for 21 days. We showed that the production of matrix metalloproteinase-2, -3, and -9, decreased after NP-2007 treatment. The levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6, and prostaglandin E2 were also reduced after treatment of NP-2007. Furthermore, the administration of NP-2007 resulted in effective preservation of both the synovial membrane and knee cartilage and significantly decreased the transformation of fibrous tissue. We verified that the treatment of NP-2007 significantly reduced the production of nitric oxide and pro-inflammatory cytokines including TNF-α, IL-1ß, and IL-6 in lipopolysaccharides-stimulated RAW 264.7 cells by regulation of the NF-kB and MAPK signaling pathways. This study indicates that NP-2007 can alleviate symptoms of osteoarthritis and can be applied as a novel treatment for OA treatment.


Assuntos
Cornus , Osteoartrite , Ratos , Animais , Metaloproteinase 2 da Matriz , Interleucina-6/farmacologia , Osteoartrite/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Colágeno/farmacologia , Condrócitos/metabolismo
14.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36982190

RESUMO

Mutations in MeCP2 result in a crippling neurological disease, but we lack a lucid picture of MeCP2's molecular role. Individual transcriptomic studies yield inconsistent differentially expressed genes. To overcome these issues, we demonstrate a methodology to analyze all modern public data. We obtained relevant raw public transcriptomic data from GEO and ENA, then homogeneously processed it (QC, alignment to reference, differential expression analysis). We present a web portal to interactively access the mouse data, and we discovered a commonly perturbed core set of genes that transcends the limitations of any individual study. We then found functionally distinct, consistently up- and downregulated subsets within these genes and some bias to their location. We present this common core of genes as well as focused cores for up, down, cell fraction models, and some tissues. We observed enrichment for this mouse core in other species MeCP2 models and observed overlap with ASD models. By integrating and examining transcriptomic data at scale, we have uncovered the true picture of this dysregulation. The vast scale of these data enables us to analyze signal-to-noise, evaluate a molecular signature in an unbiased manner, and demonstrate a framework for future disease focused informatics work.


Assuntos
Síndrome de Rett , Camundongos , Animais , Síndrome de Rett/genética , Transcriptoma , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Perfilação da Expressão Gênica , Mutação , Modelos Animais de Doenças
15.
Int J Mol Sci ; 24(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37834250

RESUMO

We investigated whether the response to anti-tumor necrosis factor (anti-TNF) treatment varied according to inflammatory tissue characteristics in Crohn's disease (CD). Bulk RNA sequencing (RNA-seq) data were obtained from inflamed and non-inflamed tissues from 170 patients with CD. The samples were clustered based on gene expression profiles using principal coordinate analysis (PCA). Cellular heterogeneity was inferred using CiberSortx, with bulk RNA-seq data. The PCA results displayed two clusters of CD-inflamed samples: one close to (Inflamed_1) and the other far away (Inflamed_2) from the non-inflamed samples. Inflamed_1 was rich in anti-TNF durable responders (DRs), and Inflamed_2 was enriched in non-durable responders (NDRs). The CiberSortx results showed that the cell fraction of activated fibroblasts was six times higher in Inflamed_2 than in Inflamed_1. Validation with public gene expression datasets (GSE16879) revealed that the activated fibroblasts were enriched in NDRs over Next, we used DRs by 1.9 times pre-treatment and 7.5 times after treatment. Fibroblast activation protein (FAP) was overexpressed in the Inflamed_2 and was also overexpressed in the NDRs in both the RISK and GSE16879 datasets. The activation of fibroblasts may play a role in resistance to anti-TNF therapy. Characterizing fibroblasts in inflamed tissues at diagnosis may help to identify patients who are likely to respond to anti-TNF therapy.


Assuntos
Doença de Crohn , Humanos , Doença de Crohn/tratamento farmacológico , Doença de Crohn/genética , Doença de Crohn/metabolismo , Inibidores do Fator de Necrose Tumoral , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , RNA/metabolismo , Fibroblastos/metabolismo , Necrose/metabolismo
16.
Hum Mutat ; 43(6): 743-759, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35224820

RESUMO

Next-generation sequencing is a prevalent diagnostic tool for undiagnosed diseases and has played a significant role in rare disease gene discovery. Although this technology resolves some cases, others are given a list of possibly damaging genetic variants necessitating functional studies. Productive collaborations between scientists, clinicians, and patients (affected individuals) can help resolve such medical mysteries and provide insights into in vivo function of human genes. Furthermore, facilitating interactions between scientists and research funders, including nonprofit organizations or commercial entities, can dramatically reduce the time to translate discoveries from bench to bedside. Several systems designed to connect clinicians and researchers with a shared gene of interest have been successful. However, these platforms exclude some stakeholders based on their role or geography. Here we describe ModelMatcher, a global online matchmaking tool designed to facilitate cross-disciplinary collaborations, especially between scientists and other stakeholders of rare and undiagnosed disease research. ModelMatcher is integrated into the Rare Diseases Models and Mechanisms Network and Matchmaker Exchange, allowing users to identify potential collaborators in other registries. This living database decreases the time from when a scientist or clinician is making discoveries regarding their genes of interest, to when they identify collaborators and sponsors to facilitate translational and therapeutic research.


Assuntos
Doenças não Diagnosticadas , Bases de Dados Factuais , Humanos , Doenças Raras/diagnóstico , Doenças Raras/genética , Sistema de Registros , Pesquisadores
17.
Infect Immun ; 90(2): e0057221, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34807735

RESUMO

Enterotoxigenic Escherichia coli (ETEC) isolates are genetically diverse pathological variants of E. coli defined by the production of heat-labile (LT) and/or heat-stable (ST) toxins. ETEC strains are estimated to cause hundreds of millions of cases of diarrheal illness annually. However, it is not clear that all strains are equally equipped to cause disease, and asymptomatic colonization with ETEC is common in low- to middle-income regions lacking basic sanitation and clean water where ETEC are ubiquitous. Recent molecular epidemiology studies have revealed a significant association between strains that produce EatA, a secreted autotransporter protein, and the development of symptomatic infection. Here, we demonstrate that LT stimulates production of MUC2 mucin by goblet cells in human small intestine, enhancing the protective barrier between pathogens and enterocytes. In contrast, using explants of human small intestine as well as small intestinal enteroids, we show that EatA counters this host defense by engaging and degrading the MUC2 mucin barrier to promote bacterial access to target enterocytes and ultimately toxin delivery, suggesting that EatA plays a crucial role in the molecular pathogenesis of ETEC. These findings may inform novel approaches to prevention of acute diarrheal illness as well as the sequelae associated with ETEC and other pathogens that rely on EatA and similar proteases for efficient interaction with their human hosts.


Assuntos
Toxinas Bacterianas , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Diarreia , Enterócitos , Escherichia coli Enterotoxigênica/metabolismo , Enterotoxinas/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Intestino Delgado , Mucina-2/genética , Mucina-2/metabolismo , Mucinas/metabolismo
18.
Psychooncology ; 31(2): 167-175, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34460129

RESUMO

OBJECTIVE: Identifying modifiable factors affecting work ability among cancer survivors is important. The primary aim of the present study was to examine the effects of depression and related psychological factors on work ability among breast cancer survivors in Australia. METHODS: In this cross-sectional electronic and postal survey, Australian breast cancer survivors were investigated. Work status and conditions before and after cancer treatment were analysed. Work ability was measured using the Work Limitation Questionnaire©-Short Form (WLQ-SF) with its four domains (time management, physical tasks, mental-interpersonal tasks, and output tasks). Three psychological factors were investigated: depression, fear of cancer recurrence, and demoralisation. Sociodemographic and clinical data were also collected. Multivariate regression analysis was used to identify the associations of psychological factors with WLQ-SF. RESULTS: Among eligible survivors, 310 (50%) responded to the survey and were analysed. Nearly one third reported their work conditions had changed after cancer treatment. The depressed group reported limited work ability in 35%-44% of the four domains of WLQ-SF, while the non-depressed group reported limited work ability in only 8%-13%. At-work productivity loss was approximately fourfold higher in the depressed group than in the non-depressed group. In multivariate analysis, at-work productivity loss was associated with depression, demoralisation, and past history of anxiety. CONCLUSIONS: After breast cancer treatment, work conditions changed toward lower wages and working hours. Depression, demoralisation, and past history of anxiety were associated with lower work ability. Further evaluations of work rehabilitation in breast cancer survivors are warranted.


Assuntos
Neoplasias da Mama , Sobreviventes de Câncer , Ansiedade/epidemiologia , Austrália , Neoplasias da Mama/psicologia , Neoplasias da Mama/terapia , Sobreviventes de Câncer/psicologia , Estudos Transversais , Depressão/epidemiologia , Depressão/psicologia , Feminino , Humanos , Recidiva Local de Neoplasia , Qualidade de Vida/psicologia , Sobreviventes/psicologia , Avaliação da Capacidade de Trabalho
19.
Proc Natl Acad Sci U S A ; 116(17): 8289-8294, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30948645

RESUMO

DNA-reactive compounds are harnessed for cancer chemotherapy. Their genotoxic effects are considered to be the main mechanism for the cytotoxicity to date. Because this mechanism preferentially affects actively proliferating cells, it is postulated that the cytotoxicity is specific to cancer cells. Nonetheless, they do harm normal quiescent cells, suggesting that there are other cytotoxic mechanisms to be uncovered. By employing doxorubicin as a representative DNA-reactive compound, we have discovered a cytotoxic mechanism that involves a cellular noncoding RNA (ncRNA) nc886 and protein kinase R (PKR) that is a proapoptotic protein. nc886 is transcribed by RNA polymerase III (Pol III), binds to PKR, and prevents it from aberrant activation in most normal cells. We have shown here that doxorubicin evicts Pol III from DNA and, thereby, shuts down nc886 transcription. Consequently, the instantaneous depletion of nc886 provokes PKR and leads to apoptosis. In a short-pulse treatment of doxorubicin, these events are the main cause of cytotoxicity preceding the DNA damage response in a 3D culture system as well as the monolayer cultures. By identifying nc886 as a molecular signal for PKR to sense doxorubicin, we have provided an explanation for the conundrum why DNA-damaging drugs can be cytotoxic to quiescent cells that have the competent nc886/PKR pathway.


Assuntos
Apoptose/efeitos dos fármacos , DNA/metabolismo , MicroRNAs/metabolismo , RNA não Traduzido , Linhagem Celular , Doxorrubicina/farmacologia , Humanos , MicroRNAs/genética , RNA Polimerase III/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Transdução de Sinais/efeitos dos fármacos , eIF-2 Quinase/metabolismo
20.
Sensors (Basel) ; 22(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35684797

RESUMO

Depression in the elderly is an important social issue considering the population aging of the world. In particular, elderly living alone who has narrowed social relationship due to bereavement and retirement are more prone to be depressed. Long-term depressed mood can be a precursor to eventual depression as a disease. Our goal is how to predict the depressed mood of single household elderly from unobtrusive monitoring of their daily life. We have selected a wearable band with multiple sensors for monitoring elderly people. Depression questionnaire has been surveyed periodically to be used as the labels. Instead of working with depression patients, we recruited 14 single household elderly people from a nearby community. The wearable band provided daily activity and biometric data for 71 days. From the data, we generate a depressed mood prediction model. Multiple features from the collected sensor data are exploited for model generation. One general model is generated to be used as the baseline for the initial model deployment. Personal models are also generated for model refinement. The general model has a high recall of 80% in an MLP model. Individual models achieved an average recall of 82.7%. In this study, we have demonstrated that we can generate depressed mood prediction models with data collected from real daily living. Our work has shown the feasibility of using a wearable band as an unobtrusive depression monitoring sensor even for elderly people.


Assuntos
Depressão , Dispositivos Eletrônicos Vestíveis , Atividades Cotidianas , Afeto , Idoso , Depressão/diagnóstico , Humanos , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA