Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Chem Phys ; 160(19)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38767262

RESUMO

Water shows anomalous properties that are enhanced upon supercooling. The unusual behavior is observed in both H2O and D2O, however, with different temperature dependences for the two isotopes. It is often noted that comparing the properties of the isotopes at two different temperatures (i.e., a temperature shift) approximately accounts for many of the observations-with a temperature shift of 7.2 K in the temperature of maximum density being the most well-known example. However, the physical justification for such a shift is unclear. Motivated by recent work demonstrating a "corresponding-states-like" rescaling for water properties in three classical water models that all exhibit a liquid-liquid transition and critical point [Uralcan et al., J. Chem. Phys. 150, 064503 (2019)], the applicability of this approach for reconciling the differences in the temperature- and pressure-dependent thermodynamic properties of H2O and D2O is investigated here. Utilizing previously published data and equations-of-state for H2O and D2O, we show that the available data and models for these isotopes are consistent with such a low temperature correspondence. These observations provide support for the hypothesis that a liquid-liquid critical point, which is predicted to occur at low temperatures and high pressures, is the origin of many of water's anomalies.

2.
Proc Natl Acad Sci U S A ; 118(14)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33790015

RESUMO

The origin of water's anomalous properties has been debated for decades. Resolution of the problem is hindered by a lack of experimental data in a crucial region of temperatures, T, and pressures where supercooled water rapidly crystallizes-a region often referred to as "no man's land." A recently developed technique where water is heated and cooled at rates greater than 109 K/s now enables experiments in this region. Here, it is used to investigate the structural relaxation and crystallization of deeply supercooled water for 170 K < T < 260 K. Water's relaxation toward a new equilibrium structure depends on its initial structure with hyperquenched glassy water (HQW) typically relaxing more quickly than low-density amorphous solid water (LDA). For HQW and T > 230 K, simple exponential relaxation kinetics is observed. For HQW at lower temperatures, increasingly nonexponential relaxation is observed, which is consistent with the dynamics expected on a rough potential energy landscape. For LDA, approximately exponential relaxation is observed for T > 230 K and T < 200 K, with nonexponential relaxation only at intermediate temperatures. At all temperatures, water's structure can be reproduced by a linear combination of two, local structural motifs, and we show that a simple model accounts for the complex kinetics within this context. The relaxation time, τ rel , is always shorter than the crystallization time, τ xtal For HQW, the ratio, τ xtal /τ rel , goes through a minimum at ∼198 K where the ratio is about 60.

3.
Phys Chem Chem Phys ; 25(19): 13645-13653, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37145025

RESUMO

The interaction of water with metal oxide surfaces is of key importance to several research fields and applications. Because of its ability to photo-catalyze water splitting, reducible anatase TiO2 (a-TiO2) is of particular interest. Here, we combine experiments and theory to study the dissociation of water on bulk-reduced a-TiO2(101). Following large water exposures at room temperature, point-like protrusions appear on the a-TiO2(101) surface, as shown by scanning tunneling microscopy (STM). These protrusions originate from hydroxyl pairs, consisting of terminal and bridging OH groups, OHt/OHb, as revealed by infrared reflection absorption spectroscopy (IRRAS) and valence band experiments. Utilizing density functional theory (DFT) calculations, we offer a comprehensive model of the water/a-TiO2(101) interaction. This model also explains why the hydroxyl pairs are thermally stable up to ∼480 K.

4.
J Chem Phys ; 159(6)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37551812

RESUMO

Experiments investigating the properties of deeply supercooled liquid water are needed to develop a comprehensive understanding of water's anomalous properties. One approach involves transiently heating nanoscale water films into the supercooled region for several nanoseconds at a time and then interrogating the water films after they have quenched to cryogenic temperatures. To relate the results obtained with this approach to other experiments and simulations on supercooled water, it is important to understand how closely the quenched structure tracks the (metastable) equilibrium structure of water as a function of the transient heating temperature. A key step involves quantifying the extent to which water that is transiently heated to ambient temperatures [hyperquenched water (HQW)] subsequently relaxes toward the structure of low-density amorphous (LDA) ice as it cools. We analyzed the infrared reflection-absorption spectra of LDA, HQW, and crystalline ice films to determine their complex indices of refraction. With this information, we estimate that HQW retains ∼50%-60% of a structural motif characteristic of water at high temperatures with the balance comprised of a low-temperature motif. This result, along with results from x-ray diffraction experiments on water and amorphous ices, allows one to quantify the fraction of the high-temperature motif at approximately zero pressure as a function of temperature from 150 to 350 K.

5.
J Chem Phys ; 159(10)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37702358

RESUMO

The structure and dynamics of water on solid surfaces critically affect the chemistry of materials in ambient and aqueous environments. Here, we investigate the hydrogen bonding network of water adsorbed on the majority (101) surface of anatase TiO2, a widely used photocatalyst, using polarization- and azimuth-resolved infrared spectroscopy combined with neural network potential molecular dynamics simulations. Our results show that one monolayer of water saturates the undercoordinated titanium (Ti5c) sites, forming one-dimensional chains of molecule hydrogen bonded to surface undercoordinated bridging oxygen (O2c) atoms. As the coverage increases, water adsorption on O2c sites leads to significant restructuring of the water monolayer and the formation of a two-dimensional hydrogen bond network characterized by tightly bound pairs of water molecules on adjacent Ti5c and O2c sites. This structural motif likely persists at ambient conditions, influencing the reactions occurring there. The results reported here provide critical details of the structure of the water-anatase (101) interface that were previously hypothesized but unconfirmed experimentally.

6.
Environ Sci Technol ; 56(8): 5029-5036, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35390256

RESUMO

Over the last several decades, there have been several studies examining the radiation stability of boehmite and other aluminum oxyhydroxides, yet less is known about the impact of radiation on boehmite dissolution. Here, we investigate radiation effects on the dissolution behavior of boehmite by employing liquid-phase transmission electron microscopy (LPTEM) and varying the electron flux on the samples consisting of either single nanoplatelets or aggregated stacks. We show that boehmite nanoplatelets projected along the [010] direction exhibit uniform dissolution with a strong dependence on the electron dose rate. For nanoplatelets that have undergone oriented aggregation, we show that the dissolution occurs preferentially at the particles at the ends of the stacks that are more accessible to bulk solution than at the others inside the aggregate. In addition, at higher dose rates, electrostatic repulsion and knock-on damage from the electron beam causes delamination of the stacks and dissolution at the interfaces between particles in the aggregate, indicating that there is a threshold dose rate for electron-beam enhancement of dissolution of boehmite aggregates.

7.
J Chem Phys ; 156(8): 084501, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35232198

RESUMO

We have examined the structure of supercooled liquid D2O as a function of temperature between 185 and 255 K using pulsed laser heating to rapidly heat and cool the sample on a nanosecond timescale. The liquid structure can be represented as a linear combination of two structural motifs, with a transition between them described by a logistic function centered at 218 K with a width of 10 K. The relaxation to a metastable state, which occurred prior to crystallization, exhibited nonexponential kinetics with a rate that was dependent on the initial structural configuration. When the temperature is scaled by the temperature of maximum density, which is an isostructural point of the isotopologues, the structural transition and the non-equilibrium relaxation kinetics of D2O agree remarkably well with those for H2O.

8.
J Chem Phys ; 154(14): 144703, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33858151

RESUMO

We measure the isothermal crystallization kinetics of amorphous acetonitrile films using molecular beam dosing and reflection adsorption infrared spectroscopy techniques. Experiments on a graphene covered Pt(111) substrate revealed that the crystallization rate slows dramatically during long time periods and that the overall kinetics cannot be described by a simple application of the Avrami equation. The crystallization kinetics also have a thickness dependence with the thinner films crystallizing much slower than the thicker ones. Additional experiments showed that decane layers at both the substrate and vacuum interfaces can also affect the crystallization rates. A comparison of the crystallization rates for CH3CN and CD3CN films showed only an isotope effect of ∼1.09. When amorphous films were deposited on a crystalline film, the crystalline layer did not act as a template for the formation of a crystalline growth front. These overall results suggest that the crystallization kinetics are complicated, indicating the possibility of multiple nucleation and growth mechanisms.

9.
J Chem Phys ; 150(21): 214703, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31176348

RESUMO

The growth rate of crystalline ice (CI) in amorphous solid water (ASW) films was investigated using reflection absorption infrared spectroscopy. Two different experiments were set up to measure rates of the crystallization front propagation from the underlying crystalline template upward and from the vacuum interface downward. In one set of experiments, layers of ASW (5% D2O in H2O) were grown on a CI template and capped with a decane layer. In isothermal experiments from 140 to 150 K, crystallization was observed from the onset (no induction time) and the extent of crystallization increased linearly with time. In a second set of experiments, uncapped ASW films without a CI template were studied. The films were created by placing a 100 ML isotopic layer (5% D2O in H2O) at various positions in a 1000 ML ASW (H2O) film. The CI growth rates obtained from the two configurations (capped films with a CI template and uncapped films without a CI template) are in quantitative agreement. The results support the idea that for ASW films in a vacuum, a crystalline layer forms at the surface that then acts as a CI template for a growth front that moves downward into the film.

10.
J Chem Phys ; 150(20): 204509, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31153179

RESUMO

The crystallization kinetics of transiently heated, nanoscale water films were investigated for 188 K < Tpulse < 230 K, where Tpulse is the maximum temperature obtained during a heat pulse. The water films, which had thicknesses ranging from approximately 15-30 nm, were adsorbed on a Pt(111) single crystal and heated with ∼10 ns laser pulses, which produced heating and cooling rates of ∼109-1010 K/s in the adsorbed water films. Because the ice growth rates have been measured independently, the ice nucleation rates could be determined by modeling the observed crystallization kinetics. The experiments show that the nucleation rate goes through a maximum at T = 216 K ± 4 K, and the rate at the maximum is 1029±1 m-3 s-1. The maximum nucleation rate reported here for flat, thin water films is consistent with recent measurements of the nucleation rate in nanometer-sized water drops at comparable temperatures. However, the nucleation rate drops rapidly at lower temperatures, which is different from the nearly temperature-independent rates observed for the nanometer-sized drops. At T ∼ 189 K, the nucleation rate for the current experiments is a factor of ∼104-5 smaller than the rate at the maximum. The nucleation rate also decreases for Tpulse > 220 K, but the transiently heated water films are not very sensitive to the smaller nucleation rates at higher temperatures. The crystallization kinetics are consistent with a "classical" nucleation and growth mechanism indicating that there is an energetic barrier for deeply supercooled water to convert to ice.

11.
Proc Natl Acad Sci U S A ; 113(52): 14921-14925, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-27956609

RESUMO

Understanding deeply supercooled water is key to unraveling many of water's anomalous properties. However, developing this understanding has proven difficult due to rapid and uncontrolled crystallization. Using a pulsed-laser-heating technique, we measure the growth rate of crystalline ice, G(T), for 180 K < T < 262 K, that is, deep within water's "no man's land" in ultrahigh-vacuum conditions. Isothermal measurements of G(T) are also made for 126 K ≤ T ≤ 151 K. The self-diffusion of supercooled liquid water, D(T), is obtained from G(T) using the Wilson-Frenkel model of crystal growth. For T > 237 K and P ∼ 10-8 Pa, G(T) and D(T) have super-Arrhenius ("fragile") temperature dependences, but both cross over to Arrhenius ("strong") behavior with a large activation energy in no man's land. The fact that G(T) and D(T) are smoothly varying rules out the hypothesis that liquid water's properties have a singularity at or near 228 K at ambient pressures. However, the results are consistent with a previous prediction for D(T) that assumed no thermodynamic transitions occur in no man's land.

12.
Phys Chem Chem Phys ; 20(17): 11634-11642, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29664489

RESUMO

The radiation-induced decomposition and desorption of nanoscale amorphous solid water (D2O) films adsorbed on an α-Al2O3(0001) surface was studied at low temperature in ultrahigh vacuum using temperature programmed desorption (TPD) and electron stimulated desorption (ESD) with a mono-energetic, low energy electron source. ESD yields of molecular products (D2, O2 and D2O) and the total sputtering yield increased with increasing D2O coverage up to ∼15 water monolayers (i.e. ∼15 × 1015 cm-2) to a coverage-independent level for thicker water films. Experiments with isotopically-layered water films (D2O and H2O) demonstrated that the highest water decomposition yields occurred at the interfaces of the nanoscale water films with the alumina substrate and vacuum. However, the increased reactivity of the water/alumina interface is relatively small compared to the enhancements in the non-thermal reactions previously observed at the water/Pt(111) and water/TiO2(110) interfaces. We propose that the relatively low activity of Al2O3(0001) for the radiation-induced production of molecular hydrogen is associated with lower reactivity of this surface with hydrogen atoms, which are likely precursors for the formation of molecular hydrogen.

13.
J Chem Phys ; 149(8): 081104, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30193464

RESUMO

Isotopic exchange reactions in mixed D2O and H2O amorphous solid water (ASW) films were investigated using reflection absorption infrared spectroscopy. Nanoscale films composed of 5% D2O in H2O were deposited on Pt(111) and graphene covered Pt(111) substrates. At 130 K, we find that the reaction is strongly dependent on the substrate with the H/D exchange being significantly more rapid on the Pt(111) surface than on graphene. At 140 K, the films eventually crystallize with the final products on the two substrates being primarily HOD molecule on Pt(111) and a mixture of HOD and unreacted D2O on graphene. We demonstrate by pre-dosing H2 and O2 on Pt(111) that the observed differences in reactivity on the two substrates are likely due to the formation of hydrogen ions at the Pt(111) surface that are not formed on graphene. Once formed the mobile protons move through the ASW overlayer to initiate the H/D exchange reaction.

14.
J Chem Phys ; 144(16): 164201, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27131543

RESUMO

A pulsed laser heating system has been developed that enables investigations of the dynamics and kinetics of nanoscale liquid films and liquid/solid interfaces on the nanosecond time scale in ultrahigh vacuum (UHV). Details of the design, implementation, and characterization of a nanosecond pulsed laser system for transiently heating nanoscale films are described. Nanosecond pulses from a Nd:YAG laser are used to rapidly heat thin films of adsorbed water or other volatile materials on a clean, well-characterized Pt(111) crystal in UHV. Heating rates of ∼10(10) K/s for temperature increases of ∼100-200 K are obtained. Subsequent rapid cooling (∼5 × 10(9) K/s) quenches the film, permitting in-situ, post-heating analysis using a variety of surface science techniques. Lateral variations in the laser pulse energy are ∼±2.7% leading to a temperature uncertainty of ∼±4.4 K for a temperature jump of 200 K. Initial experiments with the apparatus demonstrate that crystalline ice films initially held at 90 K can be rapidly transformed into liquid water films with T > 273 K. No discernable recrystallization occurs during the rapid cooling back to cryogenic temperatures. In contrast, amorphous solid water films heated below the melting point rapidly crystallize. The nanosecond pulsed laser heating system can prepare nanoscale liquid and supercooled liquid films that persist for nanoseconds per heat pulse in an UHV environment, enabling experimental studies of a wide range of phenomena in liquids and at liquid/solid interfaces.

15.
Phys Chem Chem Phys ; 16(6): 2338-46, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24346491

RESUMO

Weakly-bound atoms and molecules (Ar, Kr, Xe, CO, CH4, CO2, CH3OH, N2O, and N2) are used to probe the photochemical interactions of chemisorbed oxygen on rutile TiO2(110). Ultraviolet irradiation of chemisorbed oxygen co-adsorbed with the probe species leads to photon-stimulated desorption (PSD) of some of the probe species (e.g. Kr and CH4), but not others (e.g. CO2 and N2O). Without chemisorbed oxygen, the PSD yields of all the probe species are very low or not observed. Surprisingly, both chemisorbed O2 and oxygen adatoms, Oa, are photo-active for desorption of Kr and other weakly-bound species. To our knowledge, this is the first evidence for photo-activity of Oa on TiO2(110). The Kr PSD yield increases with increasing coverage of Kr and of chemisorbed oxygen. For Kr, the angular distribution of the photodesorbed atoms is approximately cosine. The Kr distribution is quite different from the angular distribution for the O2 PSD, which is sharply peaked along the surface normal. We propose that various forms of chemisorbed oxygen are excited by reactions with electrons and/or holes created in the TiO2 substrate by UV photon irradiation. The photo-excited oxygen collides with, and transfers energy to, neighboring co-adsorbed atoms or molecules. For co-adsorbates with a small enough binding energy to the substrate, desorption may result. The observed phenomenon provides a new tool for studying photochemical processes.

16.
J Chem Phys ; 140(20): 204710, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24880314

RESUMO

Low-energy (100 eV) electron-stimulated reactions in layered H2O/CO/H2O ices are investigated. For CO layers buried in amorphous solid water (ASW) films at depths of 50 monolayers (ML) or less from the vacuum interface, both oxidation and reduction reactions are observed. However, for CO buried more deeply in ASW films, only the reduction of CO to methanol is observed. Experiments with layered films of H2O and D2O show that the hydrogen atoms participating in the reduction of the buried CO originate in the region that is 10-50 ML below the surface of the ASW films and subsequently diffuse through the film. For deeply buried CO layers, the CO reduction reactions quickly increase with temperature above ∼60 K. We present a simple chemical kinetic model that treats the diffusion of hydrogen atoms in the ASW and sequential hydrogenation of the CO to methanol to account for the observations.


Assuntos
Monóxido de Carbono/química , Hidrogênio/química , Metanol/química , Água/química , Difusão , Elétrons , Cinética , Modelos Químicos , Temperatura
17.
J Chem Phys ; 141(18): 18C515, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25399180

RESUMO

We have examined the adsorption of the weakly bound species N2, O2, CO, and Kr on the (√37×√37)R25.3° water monolayer on Pt(111) using a combination of molecular beam dosing, infrared reflection absorption spectroscopy, and temperature programmed desorption. In contrast to multilayer crystalline ice, the adsorbate-free water monolayer is characterized by a lack of dangling OH bonds protruding into the vacuum (H-up). Instead, the non-hydrogen-bonded OH groups are oriented downward (H-down) to maximize their interaction with the underlying Pt(111) substrate. Adsorption of Kr and O2 have little effect on the structure and vibrational spectrum of the "√37" water monolayer while adsorption of both N2, and CO are effective in "flipping" H-down water molecules into an H-up configuration. This "flipping" occurs readily upon adsorption at temperatures as low as 20 K and the water monolayer transforms back to the H-down, "√37" structure upon adsorbate desorption above 35 K, indicating small energy differences and barriers between the H-down and H-up configurations. The results suggest that converting water in the first layer from H-down to H-up is mediated by the electrostatic interactions between the water and the adsorbates.

18.
Acc Chem Res ; 45(1): 33-42, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-21627126

RESUMO

Amorphous solid water (ASW) is a disordered version of ice created by vapor deposition onto a cold substrate (typically less than 130 K). It has a higher free energy than the crystalline phase of ice, and when heated above its glass transition temperature, it transforms into a metastable supercooled liquid. This unusual form of water exists on earth only in laboratories, after preparation with highly specialized equipment. It is thus fair to ask why there is any interest in studying such an esoteric material. Much of the scientific interest results from the ability to use ASW as a model system for exploring the physical and reactive properties of liquid water and aqueous solutions. ASW is also thought to be the predominant form of water in the extremely cold temperatures of many interstellar and planetary environments. In addition, ASW is a convenient model system for studying the stability of amorphous and glassy materials as well as the properties of highly porous materials. A fundamental understanding of such properties is invaluable in a diverse range of applications, including cryobiology, food science, pharmaceuticals, astrophysics, and nuclear waste storage, among others. Over the past 15 years, we have used molecular beams and surface science techniques to probe the thermal and nonthermal properties of nanoscale films of ASW. In this Account, we present a survey of our research on the properties of ASW using this approach. We use molecular beams to precisely control the deposition conditions (flux, incident energy, and incident angle) and create compositionally tailored, nanoscale films of ASW at low temperatures. To study the transport properties (viscosity and diffusivity), we heat the amorphous films above their glass transition temperature, T(g), at which they transform into deeply supercooled liquids prior to crystallization. The advantage of this approach is that at temperatures near T(g), the viscosity is approximately 15 orders of magnitude larger than that of a normal liquid. As a result, the crystallization kinetics are dramatically slowed, increasing the time available for experiments. For example, near T(g), a water molecule moves less than the distance of a single molecule on a typical laboratory time scale (∼1000 s). For this reason, nanoscale films help to probe the behavior and reactions of supercooled liquids at these low temperatures. ASW films can also be used for investigating the nonthermal reactions relevant to radiolysis.


Assuntos
Gelo , Nanoestruturas , Água/química , Cristalização , Transição de Fase , Soluções/química , Espectrofotometria Infravermelho/métodos , Temperatura , Termodinâmica
19.
J Phys Chem B ; 127(17): 3919-3930, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37097190

RESUMO

Understanding the properties of supercooled water is important for developing a comprehensive theory for liquid water and amorphous ices. Because of rapid crystallization for deeply supercooled water, experiments on it are typically carried out under conditions in which the temperature and/or pressure are rapidly changing. As a result, information on the structural relaxation kinetics of supercooled water as it approaches (metastable) equilibrium is useful for interpreting results obtained in this experimentally challenging region of phase space. We used infrared spectroscopy and the fast time resolution obtained by transiently heating nanoscale water films to investigate relaxation kinetics (aging) in supercooled water. When the structural relaxation of the water films was followed using a temperature jump protocol analogous to the classic experiments of Kovacs, similar memory effects were observed. In particular, after suitable aging at one temperature, water's structure displayed an extremum versus the number of heat pulses upon changing to a second temperature before eventually relaxing to a steady-state structure characteristic of that temperature. A random double well model based on the idea of dynamic heterogeneity in supercooled water accounts for the observations.

20.
J Chem Phys ; 134(20): 204702, 2011 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-21639462

RESUMO

Six H-bonds in the periodic di-interstitial structure that accounts for scanning tunneling microscope images of "√37" and "√39" wetting layers on Pt(111) are some 0.2 Šshorter than H-bonds are in ice Ih. According to a broadly obeyed correlation, this density functional theory result implies a stringent test of the di-interstitial motif, namely the presence of an OH-stretch band red-shifted from that of ice Ih by more than 1000 cm(-1). Infrared absorption spectra satisfy the test, in showing a feature centered at about 1965 cm(-1), which grows in as deposited water orders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA