Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Drug Metab Rev ; 55(4): 267-300, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37608698

RESUMO

With the 50th year mark since the launch of Drug Metabolism and Disposition journal, the field of drug metabolism and bioactivation has advanced exponentially in the past decades (Guengerich 2023).This has, in a major part, been due to the continued advances across the whole spectrum of applied technologies in hardware, software, machine learning (ML), and artificial intelligence (AI). LC-MS platforms continue to evolve to support key applications in the field, and automation is also improving the accuracy, precision, and throughput of these supporting assays. In addition, sample generation and processing is being aided by increased diversity and quality of reagents and bio-matrices so that what is being analyzed is more relevant and translatable. The application of in silico platforms (applied software, ML, and AI) is also making great strides, and in tandem with the more traditional approaches mentioned previously, is significantly advancing our understanding of bioactivation pathways and how these play a role in toxicity. All of this continues to allow the area of bioactivation to evolve in parallel with associated fields to help bring novel or improved medicines to patients with urgent or unmet needs.Shuai Wang and Cyrus Khojasteh, on behalf of the authors.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , Humanos , Espectrometria de Massas
2.
Drug Metab Rev ; 55(4): 301-342, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37737116

RESUMO

This annual review is the eighth of its kind since 2016 (Baillie et al. 2016, Khojasteh et al. 2017, Khojasteh et al. 2018, Khojasteh et al. 2019, Khojasteh et al. 2020, Khojasteh et al. 2021, Khojasteh et al. 2022). Our objective is to explore and share articles which we deem influential and significant in the field of biotransformation.


Assuntos
Biotransformação , Humanos
3.
Drug Metab Rev ; 54(3): 207-245, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35815654

RESUMO

Biotransformation field is constantly evolving with new molecular structures and discoveries of metabolic pathways that impact efficacy and safety. Recent review by Kramlinger et al. (2022) nicely captures the future (and the past) of highly impactful science of biotransformation (see the first article). Based on the selected articles, this review was categorized into three sections: (1) new modalities biotransformation, (2) drug discovery biotransformation, and (3) drug development biotransformation (Table 1).


Assuntos
Descoberta de Drogas , Biotransformação , Humanos , Inativação Metabólica
4.
Drug Metab Rev ; 54(3): 246-281, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35876116

RESUMO

This year's review on bioactivation and reactivity began as a part of the annual review on biotransformation and bioactivation led by Cyrus Khojasteh (see references). Increased contributions from experts in the field led to the development of a stand alone edition for the first time this year focused specifically on bioactivation and reactivity. Our objective for this review is to highlight and share articles which we deem influential and significant regarding the development of covalent inhibitors, mechanisms of reactive metabolite formation, enzyme inactivation, and drug safety. Based on the selected articles, we created two sections: (1) reactivity and enzyme inactivation, and (2) bioactivation mechanisms and safety (Table 1). Several biotransformation experts have contributed to this effort from academic and industry settings.[Table: see text].


Assuntos
Microssomos Hepáticos , Biotransformação , Humanos , Microssomos Hepáticos/metabolismo
5.
Drug Metab Dispos ; 50(6): 846-857, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35306476

RESUMO

Unlike with new chemical entities, the biotransformation of therapeutic proteins (TPs) has not been routinely investigated or included in regulatory filings. Nevertheless, there is an expanding pool of evidence suggesting that a more in-depth understanding of biotransformation could better aid the discovery and development of increasingly diverse modalities. For instance, such biotransformation analysis of TPs affords important information on molecular stability, which in turn may shed light on any potential impact on binding affinity, potency, pharmacokinetics, efficacy, safety, or bioanalysis. This perspective summarizes the current practices in studying biotransformation of TPs and related findings in the biopharmaceutical industry. Various TP case studies are discussed, and a fit-for-purpose approach is recommended when investigating their biotransformation. In addition, we provide a decision tree to guide the biotransformation characterization for selected modalities. By raising the awareness of this important topic, which remains relatively underexplored in the development of TPs (Bolleddula et al., 2022), we hope that current and developing practices can pave the way for establishing a consensus on the biotransformation assessment of TPs. SIGNIFICANCE STATEMENT: This article provides a comprehensive perspective of the current practices for exploring the biotransformation of therapeutic proteins across the drug development industry. We, the participants of the Innovation and Quality therapeutic protein absorption distribution metabolism excretion working group, recommend and summarize appropriate approaches for conducting biotransformation studies to support internal decision making based on the data generated in discovery and development.


Assuntos
Produtos Biológicos , Indústria Farmacêutica , Biotransformação , Humanos
6.
Drug Metab Rev ; 53(3): 384-433, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33910427

RESUMO

This annual review is the sixth of its kind since 2016 (see references). Our objective is to explore and share articles which we deem influential and significant in the field of biotransformation and bioactivation. These fields are constantly evolving with new molecular structures and discoveries of corresponding pathways for metabolism that impact relevant drug development with respect to efficacy and safety. Based on the selected articles, we created three sections: (1) drug design, (2) metabolites and drug metabolizing enzymes, and (3) bioactivation and safety (Table 1). Unlike in years past, more biotransformation experts have joined and contributed to this effort while striving to maintain a balance of authors from academic and industry settings.[Table: see text].


Assuntos
Biotransformação , Humanos
7.
Blood ; 133(6): 600-604, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30401709

RESUMO

Thrombosis is a frequent, life-threatening complication of systemic infection associated with multiple organ damage. We have previously described a novel mechanism of inflammation-driven thrombosis induced by Salmonella Typhimurium infection of mice. Thrombosis in the liver develops 7 days after infection, persisting after the infection resolves, and is monocytic cell dependent. Unexpectedly, thrombosis was not prominent in the spleen at this time, despite carrying a similar bacterial burden as the liver. In this study, we show that thrombosis does occur in the spleen but with strikingly accelerated kinetics compared with the liver, being evident by 24 hours and resolving rapidly thereafter. The distinct kinetics of thrombosis and bacterial burden provides a test of the hypothesis that thrombi form in healthy vessels to trap or remove bacteria from the circulation, often termed immunothrombosis. Remarkably, despite bacteria being detected throughout infected spleens and livers in the early days of infection, immunohistological analysis of tissue sections show that thrombi contain very low numbers of bacteria. In contrast, bacteria are present throughout platelet aggregates induced by Salmonella in vitro. Therefore, we show that thrombosis develops with organ-specific kinetics and challenge the universality of immunothrombosis as a mechanism to capture bacteria in vivo.


Assuntos
Fígado/microbiologia , Infecções por Salmonella/complicações , Salmonella typhimurium/patogenicidade , Baço/microbiologia , Trombose/microbiologia , Animais , Fígado/imunologia , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Salmonella/microbiologia , Baço/imunologia , Baço/patologia , Trombose/imunologia , Trombose/patologia
8.
Drug Metab Dispos ; 48(11): 1169-1182, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32862146

RESUMO

Although intestinal metabolism plays an important role in drug disposition, early predictions of human outcomes are challenging, in part because of limitations of available in vitro models. To address this, we have evaluated three in vitro models of human intestine (microsomes, permeabilized enterocytes, and cryopreserved intestinal mucosal epithelium) as tools to assess intestinal metabolism and estimate the fraction escaping gut metabolism (f g) in drug discovery. The models were tested with a chemically diverse set of 32 compounds, including substrates for oxidoreductive, hydrolytic, and conjugative enzymes. Liquid chromatography-high-resolution mass spectrometry was used to quantify substrate disappearance [intrinsic clearance (CLint)] and qualify metabolite formation (quantitative-qualitative bioanalysis). Fraction unbound in the incubation (f u,inc) was determined by rapid equilibrium dialysis. Measured in vitro results (CLint and f u,inc) were supplemented with literature data [passive Caco-2 apical to basolateral permeability, enterocyte blood flow, and intestinal surface area (A)] and combined using a midazolam-calibrated Q gut model to predict human f g values. All three models showed reliable CYP and UDP-glucuronosyltransferase activities, but enterocytes and mucosa may offer advantages for low-clearance compounds and alternative pathways (e.g., sulfation, hydrolases, and flavin-containing monooxigenases). Early predictions of human f g values were acceptable for the high-f g compounds (arbitrarily f g > 0.7). However, predictions of low- and moderate-f g values (arbitrarily f g < 0.7) remain challenging, indicating that further evaluation is needed (e.g., saturation effects and impact of transporters) but not immediate compound avoidance. Results suggest that tested models offer an additional value in drug discovery, especially for drug design and chemotype evaluation. SIGNIFICANCE STATEMENT: We found that cellular models of the human gut (permeabilized enterocytes and cryopreserved intestinal mucosa) offer an alternative to and potential advantage over intestinal microsomes in studies of drug metabolism, particularly for low-clearance compounds and alternative pathways (e.g., sulfation, hydrolases, and flavin-containing monooxigenases). The predictivity of human fraction escaping gut metabolism for common CYP and UDP-glucuronosyltransferase substrates based on the Q gut model is still limited, however, and appropriate further evaluation is recommended.


Assuntos
Descoberta de Drogas/métodos , Eliminação Intestinal , Mucosa Intestinal/metabolismo , Células CACO-2 , Avaliação Pré-Clínica de Medicamentos/métodos , Enterócitos , Humanos , Mucosa Intestinal/citologia , Microssomos
9.
Xenobiotica ; 50(4): 415-426, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31389297

RESUMO

Determine the inhibition mechanism through which cyclosporine inhibits the uptake and metabolism of atorvastatin in fresh rat hepatocytes using mechanistic models applied to data generated using a high throughput oil spin method.Atorvastatin was incubated in fresh rat hepatocytes (0.05-150 nmol/ml) with or without 20 min pre-incubation with 10 nmol/ml cyclosporine and sampled over 0.25-60 min using a high throughput oil spin method. Micro-rate constant and macro-rate constant mechanistic models were ranked based on goodness of fit values.The best fitting model to the data was a micro-rate constant mechanistic model including non-competitive inhibition of uptake and competitive inhibition of metabolism by cyclosporine (Model 2). The association rate constant for atorvastatin was 150-fold greater than the dissociation rate constant and 10-fold greater than the translocation into the cell. The association and dissociation rate constants for cyclosporine were 7-fold smaller and 10-fold greater, respectively, than atorvastatin. The simulated atorvastatin-transporter-cyclosporine complex derived using the micro-rate constant parameter estimates increased in line with the incubation concentration of atorvastatin.The increased amount of data generated with the high throughput oil spin method, combined with a micro-rate constant mechanistic model helps to explain the inhibition of uptake by cyclosporine following pre-incubation.


Assuntos
Atorvastatina/metabolismo , Ciclosporina/metabolismo , Fígado/metabolismo , Animais , Transporte Biológico , Hepatócitos , Modelos Químicos , Ratos
10.
Exp Dermatol ; 27(3): 302-310, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29341265

RESUMO

Primary cicatricial alopecias (PCAs) are a group of skin diseases in which there is progressive and permanent destruction of hair follicles followed by replacement with fibrous tissue. Unfortunately, by the time patients seek clinical evaluation of their hair loss, the skin is already inflamed and/or scarred, so there is little hope for a return to their normal hair growth pattern. Clinical and basic science investigations are now focusing on three forms of human PCA: lichen planopilaris (LPP), frontal fibrosing alopecia (FFA) and central centrifugal cicatricial alopecia (CCCA). Transcriptome, lipidome and other new technologies are providing new insight into the pathogenesis of some of these diseases that are being validated and further investigated using spontaneous and genetically engineered mouse models.


Assuntos
Alopecia/diagnóstico , Alopecia/etiologia , Cicatriz/diagnóstico , Cicatriz/etiologia , Modelos Animais de Doenças , Líquen Plano/diagnóstico , Pele/patologia , Alopecia/patologia , Alopecia/terapia , Animais , Cicatriz/patologia , Cicatriz/terapia , Cães , Fibrose , Humanos , Líquen Plano/patologia , Camundongos , Couro Cabeludo
11.
Biochem Biophys Res Commun ; 482(1): 57-61, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27816454

RESUMO

A significant problem in the oxidative breakdown of lignin is the tendency of phenolic radical fragments to re-polymerise to form higher molecular weight species. In this paper we identify an extracellular flavin-dependent dehydrolipoamide dehydrogenase from Thermobifida fusca that prevents oxidative dimerization of a dimeric lignin model compound, which could be used as an accessory enzyme for lignin depolymerisation.


Assuntos
Actinobacteria/enzimologia , Di-Hidrolipoamida Desidrogenase/metabolismo , Líquido Extracelular/metabolismo , Lignina/metabolismo , Fragmentos de Peptídeos/metabolismo , Flavoproteínas/metabolismo , Multimerização Proteica
12.
J Immunol ; 194(12): 5761-74, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25980006

RESUMO

CD4(+)CD25(hi) FOXP3(+) regulatory T cells (Tregs) maintain tolerance to self-Ags. Their defective function is involved in the pathogenesis of multiple sclerosis (MS), an inflammatory demyelinating disease of the CNS. However, the mechanisms of such defective function are poorly understood. Recently, we reported that stimulation of TLR2, which is preferentially expressed by human Tregs, reduces their suppressive function and skews them into a Th17-like phenotype. In this study, we tested the hypothesis that TLR2 activation is involved in reduced Treg function in MS. We found that Tregs from MS patients expressed higher levels of TLR2 compared with healthy controls, and stimulation with the synthetic lipopeptide Pam3Cys, an agonist of TLR1/2, reduced Treg function and induced Th17 skewing in MS patient samples more than in healthy controls. These data provide a novel mechanism underlying diminished Treg function in MS. Infections that activate TLR2 in vivo (specifically through TLR1/2 heterodimers) could shift the Treg/Th17 balance toward a proinflammatory state in MS, thereby promoting disease activity and progression.


Assuntos
Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Receptor 2 Toll-Like/metabolismo , Adulto , Estudos de Casos e Controles , Diferenciação Celular/efeitos dos fármacos , Citocinas/biossíntese , Feminino , Humanos , Imunomodulação , Imunofenotipagem , Lipoproteínas/farmacologia , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/imunologia , Esclerose Múltipla Recidivante-Remitente/metabolismo , Fator de Transcrição STAT3/metabolismo , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/citologia , Células Th17/citologia , Receptor 2 Toll-Like/agonistas , Adulto Jovem
13.
Exp Mol Pathol ; 100(2): 332-6, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26960166

RESUMO

Mouse models of various types of inflammatory skin disease are often accompanied by increased dermal angiogenesis. The C3H/HeJ inbred strain spontaneously develops alopecia areata (AA), a cell mediated autoimmune disorder that can be controllably expanded using full thickness skin grafts to young unaffected mice. This provides a reproducible and progressive model for AA in which the vascularization of the skin can be examined. Mice receiving skin grafts from AA or normal mice were evaluated at 5, 10, 15, and 20 weeks after engraftment. Lymphatics are often overlooked as they are small slit-like structures above the hair follicle that resemble artifact-like separation of collagen bundles with some fixatives. Lymphatics are easily detected using lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1) by immunohistochemistry to label their endothelial cells. Using LYVE1, there were no changes in distribution or numbers of lymphatics although they were more prominent (dilated) in the mice with AA. Lyve1 transcripts were not significantly upregulated except at 10 weeks after skin grafting when clinical signs of AA first become apparent. Other genes involved with vascular growth and dilation or movement of immune cells were dysregulated, mostly upregulated. These findings emphasize aspects of AA not commonly considered and provide potential targets for therapeutic intervention.


Assuntos
Alopecia em Áreas/patologia , Modelos Animais de Doenças , Sistema Linfático/patologia , Pele/patologia , Alopecia em Áreas/genética , Alopecia em Áreas/metabolismo , Animais , Perfilação da Expressão Gênica/métodos , Glicoproteínas/genética , Glicoproteínas/metabolismo , Folículo Piloso/irrigação sanguínea , Folículo Piloso/metabolismo , Folículo Piloso/patologia , Imuno-Histoquímica , Sistema Linfático/metabolismo , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patologia , Proteínas de Membrana Transportadoras , Camundongos Endogâmicos C3H , Análise de Sequência com Séries de Oligonucleotídeos , Pele/irrigação sanguínea , Pele/metabolismo , Transplante de Pele/métodos , Fatores de Tempo
14.
J Investig Dermatol Symp Proc ; 17(2): 23-6, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26551940

RESUMO

Disease is not limited to humans. Rather, humans are but another mammal in a continuum, and as such, often share similar if not identical diseases with other mammalian species. Alopecia areata (AA) is such a disease. Natural disease occurs in humans, nonhuman primates, many domestic animals, and laboratory rodents. However, to be useful as models of human disease, affected animals need to be readily available to the research community, closely resemble the human disease, be easy to work with, and provide reproducible data. To date, the laboratory mouse (most if not all of the C3H substrains) and the Dundee experimental bald rat fit these criteria. Manipulations using full-thickness skin grafts or specific immune cell transfers have improved the models. New mouse models that carry a variety of genetic-based immunodeficiencies can now be used to recapitulate the human immune system and allow for human full-thickness skin grafts onto mice to investigate human-specific mechanistic and therapeutic questions. These models are summarized here including where they can currently be obtained from public access repositories.


Assuntos
Alopecia em Áreas/tratamento farmacológico , Alopecia em Áreas/imunologia , Modelos Animais de Doenças , Animais , Xenoenxertos , Humanos , Camundongos , Ratos , Transplante de Pele
15.
J Investig Dermatol Symp Proc ; 17(2): 27-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26551941

RESUMO

Technology now exists for rapid screening of mutated laboratory mice to identify phenotypes associated with specific genetic mutations. Large repositories exist for spontaneous mutants and those induced by chemical mutagenesis, many of which have never been fully studied or comprehensively evaluated. To supplement these resources, a variety of techniques have been consolidated in an international effort to create mutations in all known protein coding genes in the mouse. With targeted embryonic stem cell lines now available for almost all protein coding genes and more recently CRISPR/Cas9 technology, large-scale efforts are underway to create further novel mutant mouse strains and to characterize their phenotypes. However, accurate diagnosis of skin, hair, and nail diseases still relies on careful gross and histological analysis, and while not automated to the level of the physiological phenotyping, histopathology still provides the most direct and accurate diagnosis and correlation with human diseases. As a result of these efforts, many new mouse dermatological disease models are being characterized and developed.


Assuntos
Alopecia em Áreas/genética , Análise Mutacional de DNA , Modelos Animais de Doenças , Animais , Genoma , Humanos , Camundongos , Camundongos Knockout , Fenótipo
16.
Exp Mol Pathol ; 97(3): 525-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25446841

RESUMO

Alopecia areata (AA), a cell mediated autoimmune disease, is the second most common form of hair loss in humans. While the autoimmune disease is responsible for the underlying pathogenesis, the alopecia phenotype is ultimately due to hair shaft fragility and breakage associated with structural deficits. Quantitative trait genetic analyses using the C3H/HeJ mouse AA model identified cysteine-rich secretory protein 1 (Crisp1), a hair shaft structural protein, as a candidate gene within the major AA locus. Crisp1 transcripts in the skin at various times during disease development were barely detectable. In situ hybridization identified Crisp1 expression within the medulla of hair shafts from clinically normal strains of mice but not C3H/HeJ mice with AA. Follow-up work with 5-day-old C3H/HeJ mice with normal hair also had essentially no expression of Crisp1. Other non-inflammatory based follicular dystrophy mouse models with similar hair shaft abnormalities also have little or no Crisp1 expression. Shotgun proteomics, used to determine strain difference in hair proteins, confirmed that there was very little CRISP1 within normal C3H/HeJ mouse hair in comparison to 11 other strains. However, mutant mice with hair medulla defects also had undetectable levels of CRISP1 in their hair. Crisp1 null mice had normal skin, hair follicles, and hair shafts indicating that the lack of the CRISP1 protein does not translate directly into defects in the hair shaft or hair follicle. These results suggest that CRISP1 may be an important structural component of mouse hair and that its strain-specific dysregulation may indicate a predisposition to hair shaft disease such as AA.


Assuntos
Alopecia em Áreas/metabolismo , Cabelo/metabolismo , Glicoproteínas de Membrana/metabolismo , Alopecia em Áreas/genética , Alopecia em Áreas/patologia , Animais , Modelos Animais de Doenças , Cabelo/patologia , Hibridização In Situ , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase
17.
Cell Rep Med ; 5(7): 101654, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39019011

RESUMO

Plasmodium falciparum reticulocyte-binding protein homolog 5 (RH5) is a leading blood-stage malaria vaccine antigen target, currently in a phase 2b clinical trial as a full-length soluble protein/adjuvant vaccine candidate called RH5.1/Matrix-M. We identify that disordered regions of the full-length RH5 molecule induce non-growth inhibitory antibodies in human vaccinees and that a re-engineered and stabilized immunogen (including just the alpha-helical core of RH5) induces a qualitatively superior growth inhibitory antibody response in rats vaccinated with this protein formulated in Matrix-M adjuvant. In parallel, bioconjugation of this immunogen, termed "RH5.2," to hepatitis B surface antigen virus-like particles (VLPs) using the "plug-and-display" SpyTag-SpyCatcher platform technology also enables superior quantitative antibody immunogenicity over soluble protein/adjuvant in vaccinated mice and rats. These studies identify a blood-stage malaria vaccine candidate that may improve upon the current leading soluble protein vaccine candidate RH5.1/Matrix-M. The RH5.2-VLP/Matrix-M vaccine candidate is now under evaluation in phase 1a/b clinical trials.


Assuntos
Anticorpos Antiprotozoários , Vacinas Antimaláricas , Plasmodium falciparum , Proteínas de Protozoários , Vacinas de Partículas Semelhantes a Vírus , Animais , Vacinas Antimaláricas/imunologia , Anticorpos Antiprotozoários/imunologia , Plasmodium falciparum/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Humanos , Camundongos , Proteínas de Protozoários/imunologia , Ratos , Malária Falciparum/prevenção & controle , Malária Falciparum/imunologia , Antígenos de Protozoários/imunologia , Feminino , Proteínas de Transporte/imunologia , Camundongos Endogâmicos BALB C
18.
Nat Commun ; 15(1): 4857, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849365

RESUMO

Reticulocyte-binding protein homologue 5 (RH5), a leading blood-stage Plasmodium falciparum malaria vaccine target, interacts with cysteine-rich protective antigen (CyRPA) and RH5-interacting protein (RIPR) to form an essential heterotrimeric "RCR-complex". We investigate whether RCR-complex vaccination can improve upon RH5 alone. Using monoclonal antibodies (mAbs) we show that parasite growth-inhibitory epitopes on each antigen are surface-exposed on the RCR-complex and that mAb pairs targeting different antigens can function additively or synergistically. However, immunisation of female rats with the RCR-complex fails to outperform RH5 alone due to immuno-dominance of RIPR coupled with inferior potency of anti-RIPR polyclonal IgG. We identify that all growth-inhibitory antibody epitopes of RIPR cluster within the C-terminal EGF-like domains and that a fusion of these domains to CyRPA, called "R78C", combined with RH5, improves the level of in vitro parasite growth inhibition compared to RH5 alone. These preclinical data justify the advancement of the RH5.1 + R78C/Matrix-M™ vaccine candidate to Phase 1 clinical trial.


Assuntos
Anticorpos Monoclonais , Anticorpos Antiprotozoários , Antígenos de Protozoários , Vacinas Antimaláricas , Malária Falciparum , Plasmodium falciparum , Proteínas de Protozoários , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/administração & dosagem , Animais , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Feminino , Malária Falciparum/prevenção & controle , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Antígenos de Protozoários/imunologia , Ratos , Anticorpos Antiprotozoários/imunologia , Anticorpos Monoclonais/imunologia , Humanos , Epitopos/imunologia , Proteínas de Transporte/imunologia , Proteínas de Transporte/metabolismo
19.
Lancet Infect Dis ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38880111

RESUMO

BACKGROUND: A blood-stage Plasmodium falciparum malaria vaccine would provide a second line of defence to complement partially effective or waning immunity conferred by the approved pre-erythrocytic vaccines. RH5.1 is a soluble protein vaccine candidate for blood-stage P falciparum, formulated with Matrix-M adjuvant to assess safety and immunogenicity in a malaria-endemic adult and paediatric population for the first time. METHODS: We did a non-randomised, phase 1b, single-centre, dose-escalation, age de-escalation, first-in-human trial of RH5.1/Matrix-M in Bagamoyo, Tanzania. We recruited healthy adults (aged 18-45 years) and children (aged 5-17 months) to receive the RH5.1/Matrix-M vaccine candidate in the following three-dose regimens: 10 µg RH5.1 at 0, 1, and 2 months (Adults 10M), and the higher dose of 50 µg RH5.1 at 0 and 1 month and 10 µg RH5.1 at 6 months (delayed-fractional third dose regimen; Adults DFx). Children received either 10 µg RH5.1 at 0, 1, and 2 months (Children 10M) or 10 µg RH5.1 at 0, 1, and 6 months (delayed third dose regimen; Children 10D), and were recruited in parallel, followed by children who received the dose-escalation regimen (Children DFx) and children with higher malaria pre-exposure who also received the dose-escalation regimen (High Children DFx). All RH5.1 doses were formulated with 50 µg Matrix-M adjuvant. Primary outcomes for vaccine safety were solicited and unsolicited adverse events after each vaccination, along with any serious adverse events during the study period. The secondary outcome measures for immunogenicity were the concentration and avidity of anti-RH5.1 serum IgG antibodies and their percentage growth inhibition activity (GIA) in vitro, as well as cellular immunogenicity to RH5.1. All participants receiving at least one dose of vaccine were included in the primary analyses. This trial is registered at ClinicalTrials.gov, NCT04318002, and is now complete. FINDINGS: Between Jan 25, 2021, and April 15, 2021, we recruited 12 adults (six [50%] in the Adults 10M group and six [50%] in the Adults DFx group) and 48 children (12 each in the Children 10M, Children 10D, Children DFx, and High Children DFx groups). 57 (95%) of 60 participants completed the vaccination series and 55 (92%) completed 22 months of follow-up following the third vaccination. Vaccinations were well-tolerated across both age groups. There were five serious adverse events involving four child participants during the trial, none of which were deemed related to vaccination. RH5-specific T cell and serum IgG antibody responses were induced by vaccination and purified total IgG showed in vitro GIA against P falciparum. We found similar functional quality (ie, GIA per µg RH5-specific IgG) across all age groups and dosing regimens at 14 days after the final vaccination; the concentration of RH5.1-specific polyclonal IgG required to give 50% GIA was 14·3 µg/mL (95% CI 13·4-15·2). 11 children were vaccinated with the delayed third dose regimen and showed the highest median anti-RH5 serum IgG concentration 14 days following the third vaccination (723 µg/mL [IQR 511-1000]), resulting in all 11 who received the full series showing greater than 60% GIA following dilution of total IgG to 2·5 mg/mL (median 88% [IQR 81-94]). INTERPRETATION: The RH5.1/Matrix-M vaccine candidate shows an acceptable safety and reactogenicity profile in both adults and 5-17-month-old children residing in a malaria-endemic area, with all children in the delayed third dose regimen reaching a level of GIA previously associated with protective outcome against blood-stage P falciparum challenge in non-human primates. These data support onward efficacy assessment of this vaccine candidate against clinical malaria in young African children. FUNDING: The European and Developing Countries Clinical Trials Partnership; the UK Medical Research Council; the UK Department for International Development; the National Institute for Health and Care Research Oxford Biomedical Research Centre; the Division of Intramural Research, National Institute of Allergy and Infectious Diseases; the US Agency for International Development; and the Wellcome Trust.

20.
J Investig Dermatol Symp Proc ; 16(1): S23-4, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24326543

RESUMO

Alopecia areata (AA) is a cell-mediated autoimmune disease that targets actively growing hair follicles in mammals, including humans and mice. Development of the C3H/HeJ spontaneous mouse model AA nearly 20 years ago provided a much needed tool to test the hypotheses and ultimately serve as a preclinical model for drug testing. Discoveries in both human AA patients and the mouse model supported each other and lead to discoveries on the incredibly complex genetic basis of this disease. The discovery that A/J, MRL/MpJ, SJL/J, and SWR/J strains also develop AA now allows genome-wide association mapping studies to expand the list of genes underlying this disease. Potential new targets for unraveling the pathogenesis of AA include the role of retinoic acid metabolism in the severity of disease and hair shaft proteins that may be either the inciting antigen or ultimate target of the immune reaction leading to breakage of the shaft causing clinical alopecia. Comparing these model systems with human and mouse clinical disease, for both discovery and validation of the discoveries, continues to resolve the complex questions surrounding AA.


Assuntos
Alopecia em Áreas/genética , Alopecia em Áreas/metabolismo , Animais , Modelos Animais de Doenças , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Camundongos , Camundongos Endogâmicos C3H , Tretinoína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA