Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Skin Res Technol ; 30(6): e13770, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38881051

RESUMO

BACKGROUND: Melanoma is one of the most malignant forms of skin cancer, with a high mortality rate in the advanced stages. Therefore, early and accurate detection of melanoma plays an important role in improving patients' prognosis. Biopsy is the traditional method for melanoma diagnosis, but this method lacks reliability. Therefore, it is important to apply new methods to diagnose melanoma effectively. AIM: This study presents a new approach to classify melanoma using deep neural networks (DNNs) with combined multiple modal imaging and genomic data, which could potentially provide more reliable diagnosis than current medical methods for melanoma. METHOD: We built a dataset of dermoscopic images, histopathological slides and genomic profiles. We developed a custom framework composed of two widely established types of neural networks for analysing image data Convolutional Neural Networks (CNNs) and networks that can learn graph structure for analysing genomic data-Graph Neural Networks. We trained and evaluated the proposed framework on this dataset. RESULTS: The developed multi-modal DNN achieved higher accuracy than traditional medical approaches. The mean accuracy of the proposed model was 92.5% with an area under the receiver operating characteristic curve of 0.96, suggesting that the multi-modal DNN approach can detect critical morphologic and molecular features of melanoma beyond the limitations of traditional AI and traditional machine learning approaches. The combination of cutting-edge AI may allow access to a broader range of diagnostic data, which can allow dermatologists to make more accurate decisions and refine treatment strategies. However, the application of the framework will have to be validated at a larger scale and more clinical trials need to be conducted to establish whether this novel diagnostic approach will be more effective and feasible.


Assuntos
Aprendizado Profundo , Dermoscopia , Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/genética , Melanoma/diagnóstico por imagem , Melanoma/diagnóstico , Melanoma/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/patologia , Dermoscopia/métodos , Redes Neurais de Computação , Reprodutibilidade dos Testes , Genômica/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Idoso
2.
Comput Biol Med ; 180: 108962, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39142222

RESUMO

Today, doctors rely heavily on medical imaging to identify abnormalities. Proper classification of these abnormalities enables them to take informed actions, leading to early diagnosis and treatment. This paper introduces the "EfficientKNN" model, a novel hybrid deep learning approach that combines the advanced feature extraction capabilities of EfficientNetB3 with the simplicity and effectiveness of the k-Nearest Neighbors (k-NN) algorithm. Initially, EfficientNetB3, pre-trained on ImageNet, is repurposed to serve as a feature extractor. Subsequently, a GlobalAveragePooling2D layer is applied, followed by an optional Principal Component Analysis (PCA) to reduce dimensionality while preserving critical information. PCA is used selectively when deemed necessary. The extracted features are then classified using an optimized k-NN algorithm, fine-tuned through meticulous cross-validation.Our model underwent rigorous training using a curated dataset containing benign, malignant, and normal medical images. Data augmentation techniques, including rotations, shifts, flips, and zooms, were employed to help the model generalize and efficiently handle new, unseen data. To enhance the model's ability to identify the important features necessary for accurate predictions, the dataset was refined using segmentation and overlay techniques. The training utilized an ensemble of optimization algorithms-SGD, Adam, and RMSprop-with hyperparameters set at a learning rate of 0.00045, a batch size of 32, and up to 120 epochs, facilitated by early stopping to prevent overfitting.The results demonstrate that the EfficientKNN model outperforms traditional models such as VGG16, AlexNet, and VGG19 in terms of accuracy, precision, and F1-score. Additionally, the model showed better results compared to EfficientNetB3 alone. Achieving a 100 % accuracy rate on multiple tests, the EfficientKNN model has significant potential for real-world diagnostic applications. This study highlights the model's scalability, efficient use of cloud storage, and real-time prediction capabilities, all while minimizing computational demands.By integrating the strengths of EfficientNetB3's deep learning architecture with the interpretability of k-NN, EfficientKNN presents a significant advancement in medical image classification, promising improved diagnostic accuracy and clinical applicability.


Assuntos
Aprendizado Profundo , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Ultrassonografia Mamária/métodos , Algoritmos , Mama/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Análise de Componente Principal
3.
Heliyon ; 10(7): e28195, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38571667

RESUMO

People who work in dangerous environments include farmers, sailors, travelers, and mining workers. Due to the fact that they must evaluate the changes taking place in their immediate surroundings, they must gather information and data from the real world. It becomes crucial to regularly monitor meteorological parameters such air quality, rainfall, water level, pH value, wind direction and speed, temperature, atmospheric pressure, humidity, soil moisture, light intensity, and turbidity in order to avoid risks or calamities. Enhancing environmental standards is largely influenced by IoT. It greatly advances sustainable living with its innovative and cutting-edge techniques for monitoring air quality and treating water. With the aid of various sensors, microcontroller (Arduino Uno), GSM, Wi-Fi, and HTTP protocols, the suggested system is a real-time smart monitoring system based on the Internet of Things. Also, the proposed system has HTTP-based webpage enabled by Wi-Fi to transfer the data to remote locations. This technology makes it feasible to track changes in the weather from any location at any distance. The proposed system is a sophisticated, efficient, accurate, cost-effective, and dependable weather station that will be valuable to anyone who wants to monitor environmental changes on a regular basis.

4.
PLoS One ; 19(3): e0298731, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38527047

RESUMO

A shell and tube heat exchanger (STHE) for heat recovery applications was studied to discover the intricacies of its optimization. To optimize performance, a hybrid optimization methodology was developed by combining the Neural Fitting Tool (NFTool), Particle Swarm Optimization (PSO), and Grey Relational Analysis (GRE). STHE heat exchangers were analyzed systematically using the Taguchi method to analyze the critical elements related to a particular response. To clarify the complex relationship between the heat exchanger efficiency and operational parameters, grey relational grades (GRGs) are first computed. A forecast of the grey relation coefficients was then conducted using NFTool to provide more insight into the complex dynamics. An optimized parameter with a grey coefficient was created after applying PSO analysis, resulting in a higher grey coefficient and improved performance of the heat exchanger. A major and far-reaching application of this study was based on heat recovery. A detailed comparison was conducted between the estimated values and the experimental results as a result of the hybrid optimization algorithm. In the current study, the results demonstrate that the proposed counter-flow shell and tube strategy is effective for optimizing performance.


Assuntos
Algoritmos , Temperatura Alta
5.
PLoS One ; 19(6): e0304097, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38857211

RESUMO

In this study, shell and heat exchangers are optimized using an integrated optimization framework. In this research, A structured Design of Experiments (DOE) comprising 16 trials was first conducted to systematically determine the essential parameters, including mass flow rates (mh, mc), temperatures (T1, t1, T2, t2), and heat transfer coefficients (€, TR, U). By identifying the first four principal components, PCA was able to determine 87.7% of the variance, thereby reducing the dimensionality of the problem. Performance-related aspects of the system are the focus of this approach. Key outcomes (€, TR, U) were predicted by 99% R-squared using the RSM models. Multiple factors, such as the mass flow rate and inlet temperature, were considered during the design process. The maximizing efficiency, thermal resistance, and utility were achieved by considering these factors. By using genetic algorithms, Pareto front solutions that meet the requirements of decision-makers can be found. The combination of the shell and tube heat exchangers produced better results than expected. Engineering and designers can gain practical insight into the mass flow rate, temperature, and key responses (€, TR, U) if they quantify improvements in these factors. Despite the importance of this study, it has several potential limitations, including specific experimental conditions and the need to validate it in other situations as well. Future research could investigate other factors that influence system performance. A holistic optimization framework can improve the design and engineering of heat exchangers in the future. As a result of the study, a foundation for innovative advancements in the field has been laid with tangible improvements. The study exceeded expectations by optimizing shell and heat exchanger systems using an integrated approach, thereby contributing significantly to the advancement of the field.


Assuntos
Algoritmos , Temperatura Alta , Desenho de Equipamento , Modelos Teóricos
6.
SLAS Technol ; 29(4): 100161, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901762

RESUMO

Most classification models for Alzheimer's Diagnosis (AD) do not have specific strategies for individual input samples, leading to the problem of easily overlooking personalized differences between samples. This research introduces a customized dynamically ensemble convolution neural network (PDECNN), which is able to build a specific integration strategy based on the distinctiveness of the sample. In this paper, we propose a personalized dynamic ensemble alzheimer's Diagnosis classification model. This model will dynamically modify the deteriorated brain areas of interest depending on various samples since it can adjust to variations in the degeneration of sample brain areas. In clinical problems, the PDECNN model has additional diagnostic importance since it can identify sample-specific degraded brain areas based on input samples. This model considers the variability of brain region degeneration levels between input samples, evaluates the degree of degeneration of specific brain regions using an attention mechanism, and selects and integrates brain region features based on the degree of degeneration. Furthermore, by redesigning the classification accuracy performance, we respectively improve it by 4 %, 11 %, and 8 %. Moreover, the degraded brain regions identified by the model show high consistency with the clinical manifestations of AD.


Assuntos
Doença de Alzheimer , Aprendizado Profundo , Doença de Alzheimer/diagnóstico , Humanos , Encéfalo/patologia , Redes Neurais de Computação
7.
PLoS One ; 18(8): e0289823, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37566574

RESUMO

Current methods of edge identification were constrained by issues like lighting changes, position disparity, colour changes, and gesture variability, among others. The aforementioned modifications have a significant impact, especially on scaled factors like temporal delay, gradient data, effectiveness in noise, translation, and qualifying edge outlines. It is obvious that an image's borders hold the majority of the shape data. Reducing the amount of time it takes for image identification, increase gradient knowledge of the image, improving efficiency in high noise environments, and pinpointing the precise location of an image are some potential obstacles in recognizing edges. the boundaries of an image stronger and more apparent locate those borders in the image initially, sharpening it by removing any extraneous detail with the use of the proper filters, followed by enhancing the edge-containing areas. The processes involved in recognizing edges are filtering, boosting, recognizing, and localizing. Numerous approaches have been suggested for the previously outlined identification of edges procedures. Edge detection using Fast pixel-based matching and contours mappingmethods are used to overcome the aforementioned restrictions for better picture recognition. In this article, we are introducing the Fast Pixel based matching and contours mapping algorithms to compare the edges in reference and targeted frames using mask-propagation and non-local techniques. Our system resists significant item visual fluctuation as well as copes with obstructions because we incorporate input from both the first and prior frames Improvement in performance in proposed system is discussed in result section, evidences are tabulated and sketched. Mainly detection probabilities and detection time is remarkably reinforced Effective identification of such things were widely useful in fingerprint comparison, medical diagnostics, Smart Cities, production, Cyber Physical Systems, incorporating Artificial Intelligence, and license plate recognition are conceivable applications of this suggested work.


Assuntos
Algoritmos , Inteligência Artificial , Reconhecimento Psicológico
8.
Heliyon ; 9(12): e22844, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38144343

RESUMO

The crucial aspect of the medical sector is healthcare in today's modern society. To analyze a massive quantity of medical information, a medical system is necessary to gain additional perspectives and facilitate prediction and diagnosis. This device should be intelligent enough to analyze a patient's state of health through social activities, individual health information, and behavior analysis. The Health Recommendation System (HRS) has become an essential mechanism for medical care. In this sense, efficient healthcare networks are critical for medical decision-making processes. The fundamental purpose is to maintain that sensitive information can be shared only at the right moment while guaranteeing the effectiveness of data, authenticity, security, and legal concerns. As some people use social media to recognize their medical problems, healthcare recommendation systems need to generate findings like diagnosis recommendations, medical insurance, medical passageway-based care strategies, and homeopathic remedies associated with a patient's health status. New studies aimed at the use of vast numbers of health information by integrating multidisciplinary data from various sources are addressed, which also decreases the burden and health care costs. This article presents a recommended intelligent HRS using the deep learning system of the Restricted Boltzmann Machine (RBM)-Coevolutionary Neural Network (CNN) that provides insights on how data mining techniques could be used to introduce an efficient and effective health recommendation systems engine and highlights the pharmaceutical industry's ability to translate from either a conventional scenario towards a more personalized. We developed our proposed system using TensorFlow and Python. We evaluate the suggested method's performance using distinct error quantities compared to alternative methods using the health care dataset. Furthermore, the suggested approach's accuracy, precision, recall, and F-measure were compared with the current methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA