Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 462
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38966995

RESUMO

Nuclear actin-based movements support DNA double-strand break (DSB) repair. However, molecular determinants that promote filamentous actin (F-actin) formation on the damaged chromatin remain undefined. Here we describe the DYRK1A kinase as a nuclear activity that promotes local F-actin assembly to support DSB mobility and repair, accomplished in part by its targeting of actin nucleator spire homolog 1 (Spir1). Indeed, perturbing DYRK1A-dependent phosphorylation of S482 mis-regulated Spir1 accumulation at damaged-modified chromatin, and led to compromised DSB-associated actin polymerization and attenuated DNA repair. Our findings uncover a role of the DYRK1A-Spir1 axis in nuclear actin dynamics during early DSB responses, and highlight the intricate details of nuclear cytoskeletal network in DSB repair and genome stability maintenance.

2.
Nature ; 561(7724): E43, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30013121

RESUMO

In this Letter, affiliation number 1 was originally missing from the HTML; the affiliations were missing for author Ming-Yow Hung in the HTML; and the Fig. 4 legend erroneously referred to panels a-h, instead of a-g. These errors have been corrected online.

3.
Nature ; 558(7709): 301-306, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29875409

RESUMO

Oxidized phospholipids (OxPL) are ubiquitous, are formed in many inflammatory tissues, including atherosclerotic lesions, and frequently mediate proinflammatory changes 1 . Because OxPL are mostly the products of non-enzymatic lipid peroxidation, mechanisms to specifically neutralize them are unavailable and their roles in vivo are largely unknown. We previously cloned the IgM natural antibody E06, which binds to the phosphocholine headgroup of OxPL, and blocks the uptake of oxidized low-density lipoprotein (OxLDL) by macrophages and inhibits the proinflammatory properties of OxPL2-4. Here, to determine the role of OxPL in vivo in the context of atherogenesis, we generated transgenic mice in the Ldlr-/- background that expressed a single-chain variable fragment of E06 (E06-scFv) using the Apoe promoter. E06-scFv was secreted into the plasma from the liver and macrophages, and achieved sufficient plasma levels to inhibit in vivo macrophage uptake of OxLDL and to prevent OxPL-induced inflammatory signalling. Compared to Ldlr-/- mice, Ldlr -/- E06-scFv mice had 57-28% less atherosclerosis after 4, 7 and even 12 months of 1% high-cholesterol diet. Echocardiographic and histologic evaluation of the aortic valves demonstrated that E06-scFv ameliorated the development of aortic valve gradients and decreased aortic valve calcification. Both cholesterol accumulation and in vivo uptake of OxLDL were decreased in peritoneal macrophages, and both peritoneal and aortic macrophages had a decreased inflammatory phenotype. Serum amyloid A was decreased by 32%, indicating decreased systemic inflammation, and hepatic steatosis and inflammation were also decreased. Finally, the E06-scFv prolonged life as measured over 15 months. Because the E06-scFv lacks the functional effects of an intact antibody other than the ability to bind OxPL and inhibit OxLDL uptake in macrophages, these data support a major proatherogenic role of OxLDL and demonstrate that OxPL are proinflammatory and proatherogenic, which E06 counteracts in vivo. These studies suggest that therapies inactivating OxPL may be beneficial for reducing generalized inflammation, including the progression of atherosclerosis, aortic stenosis and hepatic steatosis.


Assuntos
Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Hipercolesterolemia/metabolismo , Inflamação/metabolismo , Fosfolipídeos/antagonistas & inibidores , Fosfolipídeos/metabolismo , Animais , Estenose da Valva Aórtica/tratamento farmacológico , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Apoptose , Aterosclerose/induzido quimicamente , Aterosclerose/genética , Colesterol/administração & dosagem , Colesterol/farmacologia , Progressão da Doença , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Feminino , Hipercolesterolemia/patologia , Imunoglobulina M/genética , Imunoglobulina M/imunologia , Imunoglobulina M/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/patologia , Lipoproteínas LDL/metabolismo , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oxirredução , Fosfolipídeos/química , Fosfolipídeos/imunologia , Fosforilcolina/imunologia , Receptores de LDL/deficiência , Receptores de LDL/genética , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/uso terapêutico
4.
Am J Physiol Cell Physiol ; 324(6): C1249-C1262, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37125772

RESUMO

Control of the movement of ions and water across epithelia is essential for homeostasis. Changing the number or activity of ion channels at the plasma membrane is a significant regulator of epithelial transport. In polarized epithelia, the intermediate-conductance calcium-activated potassium channel, KCa3.1 is delivered to the basolateral membrane where it generates and maintains the electrochemical gradients required for epithelial transport. The mechanisms that control the delivery of KCa3.1 to the basolateral membrane are still emerging. Herein, we investigated the role of the highly conserved tethering complex exocyst. In epithelia, exocyst is involved in the tethering of post-Golgi secretory vesicles with the basolateral membrane, which is required before membrane fusion. In our Fisher rat thyroid cell line that stably expresses KCa3.1, siRNA knockdown of either of the exocyst subunits Sec3, Sec6, or Sec8 significantly decreased KCa3.1-specific current. In addition, knockdown of exocyst complex subunits significantly reduced the basolateral membrane protein level of KCa3.1. Finally, co-immunoprecipitation experiments suggest associations between Sec6 and KCa3.1, but not between Sec8 and KCa3.1. Collectively, based on these data and our previous studies, we suggest that components of exocyst complex are crucially important in the tethering of KCa3.1 to the basolateral membrane. After which, Soluble N-ethylmaleimide-sensitive factor (SNF) Attachment Receptors (SNARE) proteins aid in the insertion of KCa3.1-containing vesicles into the basolateral membrane of polarized epithelia.NEW & NOTEWORTHY Our Ussing chamber and immunoblot experiments demonstrate that when subunits of the exocyst complex were transiently knocked down, this significantly reduced the basolateral population and functional expression of KCa3.1. These data suggest, combined with our protein association experiments, that the exocyst complex regulates the tethering of KCa3.1-containing vesicles to the basolateral membrane prior to the SNARE-dependent insertion of channels into the basolateral membrane of epithelial cells.


Assuntos
Células Epiteliais , Fusão de Membrana , Ratos , Animais , Membrana Celular/metabolismo , Epitélio , Células Epiteliais/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo
5.
Circulation ; 145(8): 586-602, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-34915728

RESUMO

BACKGROUND: Left ventricular noncompaction cardiomyopathy (LVNC) was discovered half a century ago as a cardiomyopathy with excessive trabeculation and a thin ventricular wall. In the decades since, numerous studies have demonstrated that LVNC primarily has an effect on left ventricles (LVs) and is often associated with LV dilation and dysfunction. However, in part because of the lack of suitable mouse models that faithfully mirror the selective LV vulnerability in patients, mechanisms underlying the susceptibility of LVs to dilation and dysfunction in LVNC remain unknown. Genetic studies have revealed that deletions and mutations in PRDM16 (PR domain-containing 16) cause LVNC, but previous conditional Prdm16 knockout mouse models do not mirror the LVNC phenotype in patients, and the underlying molecular mechanisms by which PRDM16 deficiency causes LVNC are still unclear. METHODS: Prdm16 cardiomyocyte-specific knockout (Prdm16cKO) mice were generated and analyzed for cardiac phenotypes. RNA sequencing and chromatin immunoprecipitation deep sequencing were performed to identify direct transcriptional targets of PRDM16 in cardiomyocytes. Single-cell RNA sequencing in combination with spatial transcriptomics was used to determine cardiomyocyte identity at the single-cell level. RESULTS: Cardiomyocyte-specific ablation of Prdm16 in mice caused LV-specific dilation and dysfunction, as well as biventricular noncompaction, which fully recapitulated LVNC in patients. PRDM16 functioned mechanistically as a compact myocardium-enriched transcription factor that activated compact myocardial genes while repressing trabecular myocardial genes in LV compact myocardium. Consequently, Prdm16cKO LV compact myocardial cardiomyocytes shifted from their normal transcriptomic identity to a transcriptional signature resembling trabecular myocardial cardiomyocytes or neurons. Chamber-specific transcriptional regulation by PRDM16 was attributable in part to its cooperation with LV-enriched transcription factors Tbx5 and Hand1. CONCLUSIONS: These results demonstrate that disruption of proper specification of compact cardiomyocytes may play a key role in the pathogenesis of LVNC. They also shed light on underlying mechanisms of the LV-restricted transcriptional program governing LV chamber growth and maturation, providing a tangible explanation for the susceptibility of LV in a subset of LVNC cardiomyopathies.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Ventrículos do Coração/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Camundongos , Camundongos Knockout , Fatores de Transcrição/genética
6.
Proc Natl Acad Sci U S A ; 117(29): 17019-17030, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32611815

RESUMO

DNA double-strand breaks (DSBs) trigger transient pausing of nearby transcription, an emerging ATM-dependent response that suppresses chromosomal instability. We screened a chemical library designed to target the human kinome for new activities that mediate gene silencing on DSB-flanking chromatin, and have uncovered the DYRK1B kinase as an early respondent to DNA damage. We showed that DYRK1B is swiftly and transiently recruited to laser-microirradiated sites, and that genetic inactivation of DYRK1B or its kinase activity attenuated DSB-induced gene silencing and led to compromised DNA repair. Notably, global transcription shutdown alleviated DNA repair defects associated with DYRK1B loss, suggesting that DYRK1B is strictly required for DSB repair on active chromatin. We also found that DYRK1B mediates transcription silencing in part via phosphorylating and enforcing DSB accumulation of the histone methyltransferase EHMT2. Together, our findings unveil the DYRK1B signaling network as a key branch of mammalian DNA damage response circuitries, and establish the DYRK1B-EHMT2 axis as an effector that coordinates DSB repair on transcribed chromatin.


Assuntos
Cromatina , Reparo do DNA/genética , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Transcrição Gênica/genética , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Quebras de DNA de Cadeia Dupla , Inativação Gênica , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Quinases Dyrk
7.
Vet Surg ; 52(1): 51-61, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36181274

RESUMO

OBJECTIVE: To evaluate the clinical outcomes of total hip replacements (THR) utilizing a BFX lateral bolt stem in dogs with coxofemoral joint disease. STUDY DESIGN: Retrospective study. SAMPLE POPULATION: A total of 149 dogs representing 195 THR. METHODS: Consecutive THRs utilizing a BFX lateral bolt stem were studied. Preoperative, immediate postoperative, 1-, 2-, 3-, 4-, and 12-month postoperative radiographs were performed. All major and minor complications, revisions, outcomes, subsidence, canal flare index (CFI) were recorded. RESULTS: An intraoperative complication rate of 11.8% was observed. The postoperative complication rate was 13.6%, with 9.2% major and 4.4% minor complications. Complications included: postoperative femur fractures (3.6%), coxofemoral luxation (3.6%), stem failure (0.5%), septic loosening (0.5%), aseptic loosening (0.5%), and acetabular fracture (0.5%). Three dogs underwent prophylactic plating after subjective assessment of cortical thickness. Five of 195 (2.6%) cases underwent explant of their prostheses (median = 3 months). Mean stem subsidence at 1 month postoperatively was 1.22 ± 0.16 mm. An increased CFI was associated with postoperative femur fractures (p < .05). A total of 190 of 195 (97.4%) cases returned to normal function in the long-term follow-up period. CONCLUSION: Use of the BFX lateral bolt stem resulted in minimal postoperative subsidence, a low femoral stem complication rate, and a high rate of achieving normal limb function. CLINICAL SIGNIFICANCE: The BFX lateral bolt stem should be considered in canine THR as the femoral failure rate is low and the long-term success rate is high.


Assuntos
Artroplastia de Quadril , Doenças do Cão , Fraturas do Fêmur , Prótese de Quadril , Cães , Animais , Artroplastia de Quadril/efeitos adversos , Artroplastia de Quadril/veterinária , Artroplastia de Quadril/métodos , Estudos Retrospectivos , Prótese de Quadril/veterinária , Fêmur/cirurgia , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/veterinária , Complicações Pós-Operatórias/etiologia , Fraturas do Fêmur/cirurgia , Fraturas do Fêmur/veterinária , Resultado do Tratamento , Reoperação/veterinária , Doenças do Cão/cirurgia
8.
J Proteome Res ; 21(3): 599-611, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34758617

RESUMO

Acylcholines are comprised of an acyl chain esterified to a choline moiety; acetylcholine is the best-characterized member of this class, functioning as a neurotransmitter in the central and peripheral nervous systems as well as an inhibitor of cytokine production by macrophages and other innate immune cells. Acylcholines are metabolized by a class of cholinesterases, including acetylcholinesterase (a specific regulator of acetylcholine levels) and butyrylcholinesterase (BChE, an enigmatic enzyme whose function has not been resolved by genetic knockout models). BChE provides reserve capacity to hydrolyze acetylcholine, but its importance is arguable given acetylcholinesterase is the most catalytically efficient enzyme characterized to date. While known to be substrates of BChE in vitro, endogenous production of long-chain acylcholines is a recent discovery enabled by untargeted metabolomics. Compared to acetylcholine, long-chain acylcholines show greater stability in circulation with homeostatic levels-dictated by synthesis and clearance-suggested to impact cholinergic receptor sensitivity of acetylcholine with varying levels of antagonism. Acylcholines then provide a link between BChE and non-neuronal acetylcholine signaling, filling a gap in understanding around how imbalances between acylcholines and BChE could modulate inflammatory disease, such as the "cytokine storm" identified in severe COVID-19. Areas for further research, development, and clinical testing are outlined.


Assuntos
Butirilcolinesterase , COVID-19 , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Butirilcolinesterase/genética , Butirilcolinesterase/metabolismo , Colinérgicos , Humanos , SARS-CoV-2
9.
Crit Rev Clin Lab Sci ; 59(5): 353-372, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35188863

RESUMO

Human breath offers several benefits for diagnostic applications, including simple, noninvasive collection. Breath is a rich source of clinically-relevant biological information; this includes a volatile fraction, where greater than 1,000 volatile organic compounds (VOCs) have been described so far, and breath aerosols that carry nucleic acids, proteins, signaling molecules, and pathogens. Many of these factors, especially VOCs, are delivered to the lung by the systemic circulation, and diffusion of candidate biomarkers from blood into breath allows systematic profiling of organismal health. Biomarkers on breath offer the capability to advance early detection and precision medicine in areas of global clinical need. Breath tests are noninvasive and can be performed at home or in a primary care setting, which makes them well-suited for the kind of public screening program that could dramatically improve the early detection of conditions such as lung cancer. Since measurements of VOCs on breath largely report on metabolic changes, this too aids in the early detection of a broader range of illnesses and can be used to detect metabolic shifts that could be targeted through precision medicine. Furthermore, the ability to perform frequent sampling has envisioned applications in monitoring treatment responses. Breath has been investigated in respiratory, liver, gut, and neurological diseases and in contexts as diverse as infectious diseases and cancer. Preclinical research studies using breath have been ongoing for some time, yet only a few breath-based diagnostics tests are currently available and in widespread clinical use. Most recently, tests assessing the gut microbiome using hydrogen and methane on breath, in addition to tests using urea to detect Helicobacter pylori infections have been released, yet there are many more applications of breath tests still to be realized. Here, we discuss the strengths of breath as a clinical sampling matrix and the technical challenges to be addressed in developing it for clinical use. Historically, a lack of standardized methodologies has delayed the discovery and validation of biomarker candidates, resulting in a proliferation of early-stage pilot studies. We will explore how advancements in breath collection and analysis are in the process of driving renewed progress in the field, particularly in the context of gastrointestinal and chronic liver disease. Finally, we will provide a forward-looking outlook for developing the next generation of clinically relevant breath tests and how they may emerge into clinical practice.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Compostos Orgânicos Voláteis , Biomarcadores/análise , Testes Respiratórios/métodos , Humanos , Compostos Orgânicos Voláteis/análise
10.
PLoS Biol ; 17(10): e3000385, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31600197

RESUMO

Citation data have remained hidden behind proprietary, restrictive licensing agreements, which raises barriers to entry for analysts wishing to use the data, increases the expense of performing large-scale analyses, and reduces the robustness and reproducibility of the conclusions. For the past several years, the National Institutes of Health (NIH) Office of Portfolio Analysis (OPA) has been aggregating and enhancing citation data that can be shared publicly. Here, we describe the NIH Open Citation Collection (NIH-OCC), a public access database for biomedical research that is made freely available to the community. This dataset, which has been carefully generated from unrestricted data sources such as MedLine, PubMed Central (PMC), and CrossRef, now underlies the citation statistics delivered in the NIH iCite analytic platform. We have also included data from a machine learning pipeline that identifies, extracts, resolves, and disambiguates references from full-text articles available on the internet. Open citation links are available to the public in a major update of iCite (https://icite.od.nih.gov).


Assuntos
Disseminação de Informação/ética , National Institutes of Health (U.S.)/legislação & jurisprudência , Publicação de Acesso Aberto/legislação & jurisprudência , Política Organizacional , Bibliometria , Pesquisa Biomédica , Humanos , Aprendizado de Máquina , Manuscritos como Assunto , National Institutes of Health (U.S.)/economia , Publicação de Acesso Aberto/economia , Estados Unidos
11.
Circ Res ; 127(2): 284-297, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32345129

RESUMO

RATIONALE: ZO-1 (Zonula occludens-1), a plasma membrane-associated scaffolding protein regulates signal transduction, transcription, and cellular communication. Global deletion of ZO-1 in the mouse is lethal by embryonic day 11.5. The function of ZO-1 in cardiac myocytes (CM) is largely unknown. OBJECTIVE: To determine the function of CM ZO-1 in the intact heart, given its binding to other CM proteins that have been shown instrumental in normal cardiac conduction and function. METHODS AND RESULTS: We generated ZO-1 CM-specific knockout (KO) mice using α-Myosin Heavy Chain-nuclear Cre (ZO-1cKO) and investigated physiological and electrophysiological function by echocardiography, surface ECG and conscious telemetry, intracardiac electrograms and pacing, and optical mapping studies. ZO-1cKO mice were viable, had normal Mendelian ratios, and had a normal lifespan. Ventricular morphometry and function were not significantly different between the ZO-1cKO versus control (CTL) mice, basally in young or aged mice, or even when hearts were subjected to hemodynamic loading. Atrial mass was increased in ZO-1cKO. Electrophysiological and optical mapping studies indicated high-grade atrioventricular (A-V) block in ZO-1cKO comparing to CTL hearts. While ZO-1-associated proteins such as vinculin, connexin 43, N-cadherin, and α-catenin showed no significant change with the loss of ZO-1, Connexin-45 and Coxsackie-adenovirus (CAR) proteins were reduced in atria of ZO-1cKO. Further, with loss of ZO-1, ZO-2 protein was increased significantly in ventricular CM in a presumed compensatory manner but was still not detected in the AV nodal myocytes. Importantly, the expression of the sodium channel protein NaV1.5 was altered in AV nodal cells of the ZO-1cKO versus CTL. CONCLUSIONS: ZO-1 protein has a unique physiological role in cardiac nodal tissue. This is in alignment with its known interaction with CAR and Cx45, and a new function in regulating the expression of NaV1.5 in AV node. Uniquely, ZO-1 is dispensable for function of the working myocardium.


Assuntos
Bloqueio Atrioventricular/metabolismo , Nó Atrioventricular/metabolismo , Função Ventricular , Proteína da Zônula de Oclusão-1/metabolismo , Animais , Bloqueio Atrioventricular/fisiopatologia , Nó Atrioventricular/fisiologia , Caderinas/genética , Caderinas/metabolismo , Conexinas/genética , Conexinas/metabolismo , Masculino , Camundongos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Vinculina/genética , Vinculina/metabolismo , Proteína da Zônula de Oclusão-1/genética , alfa Catenina/genética , alfa Catenina/metabolismo
12.
Am J Emerg Med ; 59: 218.e5-218.e6, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35835657

RESUMO

Brimonidine is a topical ophthalmic alpha-2 adrenergic agonist solution used to treat glaucoma. The toxidrome includes drowsiness, lethargy, hypotension, bradycardia, and respiratory depression when ingested in infants. We report a case of intentional subcutaneous injection of brimonidine in an elderly patient resulting in hypotension and CNS depression that responded to naloxone. A 73-year-old female with a past medical history significant for glaucoma, hypertension, and indwelling pacemaker presented to the emergency department after injecting her brimonidine tartrate ophthalmic solution subcutaneously (SQ). The patient was not taking any antihypertensive medications or opioids. Initial presentation consisted of lethargy, a paced rhythm of 60 bpm, and blood pressure of 91/24 mmHg with a MAP of 46. Due to central nervous system depression, 3 mg of intranasal naloxone was administered. The patient was treated with intravenous fluids and escalating doses of naloxone and required a continuous infusion. Mental status and vital signs subsequently improved. The patient was admitted to the ICU and naloxone was subsequently weaned over 12 h. Systemic central alpha-2 adrenergic agonist toxicity resulted from SQ brimonidine injection. Central alpha-2 adrenergic agonist overdoses present as sympatholytic effects including CNS depression, bradycardia, hypotension, and may mimic the opioid toxidrome. Brimonidine SQ injection has not previously been reported and this case has similar findings to other central alpha-2 adrenergic agonist poisonings. Naloxone has previously shown variable reversal of CNS depression in central alpha-2 overdose. In this case, high-dose naloxone was useful for reversing CNS depression and hemodynamic instability.


Assuntos
Overdose de Drogas , Glaucoma , Hipotensão , Agonistas alfa-Adrenérgicos/uso terapêutico , Idoso , Analgésicos Opioides/uso terapêutico , Bradicardia/tratamento farmacológico , Tartarato de Brimonidina/uso terapêutico , Overdose de Drogas/tratamento farmacológico , Feminino , Glaucoma/tratamento farmacológico , Humanos , Hipotensão/tratamento farmacológico , Lactente , Injeções Subcutâneas , Letargia , Naloxona/uso terapêutico , Soluções Oftálmicas , Quinoxalinas/uso terapêutico
13.
Circulation ; 142(4): 365-379, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32393053

RESUMO

BACKGROUND: Metabolic disorders such as obesity and diabetes mellitus can cause dysfunction of endothelial cells (ECs) and vascular rarefaction in adipose tissues. However, the modulatory role of ECs in adipose tissue function is not fully understood. Other than vascular endothelial growth factor-vascular endothelial growth factor receptor-mediated angiogenic signaling, little is known about the EC-derived signals in adipose tissue regulation. We previously identified Argonaute 1 (AGO1; a key component of microRNA-induced silencing complex) as a crucial regulator in hypoxia-induced angiogenesis. In this study, we intend to determine the AGO1-mediated EC transcriptome, the functional importance of AGO1-regulated endothelial function in vivo, and the relevance to adipose tissue function and obesity. METHODS: We generated and subjected mice with EC-AGO1 deletion (EC-AGO1-knockout [KO]) and their wild-type littermates to a fast food-mimicking, high-fat high-sucrose diet and profiled the metabolic phenotypes. We used crosslinking immunoprecipitation- and RNA-sequencing to identify the AGO1-mediated mechanisms underlying the observed metabolic phenotype of EC-AGO1-KO. We further leveraged cell cultures and mouse models to validate the functional importance of the identified molecular pathway, for which the translational relevance was explored using human endothelium isolated from healthy donors and donors with obesity/type 2 diabetes mellitus. RESULTS: We identified an antiobesity phenotype of EC-AGO1-KO, evident by lower body weight and body fat, improved insulin sensitivity, and enhanced energy expenditure. At the organ level, we observed the most significant phenotype in the subcutaneous and brown adipose tissues of KO mice, with greater vascularity and enhanced browning and thermogenesis. Mechanistically, EC-AGO1 suppression results in inhibition of thrombospondin-1 (THBS1/TSP1), an antiangiogenic and proinflammatory cytokine that promotes insulin resistance. In EC-AGO1-KO mice, overexpression of TSP1 substantially attenuated the beneficial phenotype. In human endothelium isolated from donors with obesity or type 2 diabetes mellitus, AGO1 and THBS1 are expressed at higher levels than the healthy controls, supporting a pathological role of this pathway. CONCLUSIONS: Our study suggests a novel mechanism by which ECs, through the AGO1-TSP1 pathway, control vascularization and function of adipose tissues, insulin sensitivity, and whole-body metabolic state.


Assuntos
Tecido Adiposo Marrom/metabolismo , Proteínas Argonautas/metabolismo , Suscetibilidade a Doenças , Endotélio/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Adulto , Animais , Proteínas Argonautas/genética , Dieta Hiperlipídica , Modelos Animais de Doenças , Metabolismo Energético , Fatores de Iniciação em Eucariotos/genética , Feminino , Perfilação da Expressão Gênica , Marcação de Genes , Loci Gênicos , Humanos , Resistência à Insulina , Masculino , Doenças Metabólicas/diagnóstico , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Modelos Biológicos , Obesidade , Fenótipo
14.
Bioorg Med Chem Lett ; 34: 127759, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33383152

RESUMO

In seeking novel and potent small molecule hematopoietic prostaglandin D2 synthase (H-PGDS) inhibitors as potential therapies for PGD2-mediated diseases and conditions, we explored a series comprising multiple aryl/heteroaryl rings attached in a linear arrangement. Each compound incorporates an amide or imidazole "linker" between the pyrimidine or pyridine "core" ring and the "tail" ring system. We synthesized and screened twenty analogs by fluorescence polarization binding assay, thermal shift assay, glutathione S-transferase inhibition assay, and a cell-based assay measuring suppression of LPS-induced PGD2 stimulation. Amide analogs show ten-fold greater shift in the thermal shift assay in the presence of glutathione (GSH) versus the same assay run in the absence of GSH. The imidazole analogs did not produce a significant change in thermal shift between the two assay conditions, suggesting a possible stabilization effect of the amide linker in the synthase-GSH-inhibitor complex. Imidazole analog 23, (KMN-010034) demonstrates superior potency across the in vitro assays and good in vitro metabolic stability in both human and guinea pig liver microsomes.


Assuntos
Amidas/farmacologia , Inibidores Enzimáticos/farmacologia , Imidazóis/farmacologia , Oxirredutases Intramoleculares/antagonistas & inibidores , Lipocalinas/antagonistas & inibidores , Amidas/síntese química , Amidas/química , Animais , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Cobaias , Humanos , Imidazóis/síntese química , Imidazóis/química , Oxirredutases Intramoleculares/metabolismo , Lipocalinas/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade
15.
Am J Emerg Med ; 50: 365-368, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34461397

RESUMO

BACKGROUND: The indications for prehospital hydroxocobalamin are not well defined. The aim of this study was to evaluate prehospital signs and symptoms in patients who received hydroxocobalamin to improve future use. METHODS: In this retrospective study, all patients who received prehospital Hydroxocobalamin at a tertiary care burn center from December 2012 to March 2018 were reviewed. Each case was evaluated for evidence of suspected cyanide toxicity: hypotension, syncope, CNS depression/altered mentation, seizures, respiratory or cardiac arrest. A determination was made whether or not hydroxocobalamin was indicated. RESULTS: In this study, EMS providers administered hydroxocobalamin to 42 patients between December 2012 and March 2018. The majority (71%) of suspected cyanide exposures were from house fires. The most common prehospital findings were coma or depressed CNS (36%), followed by hypotension (16%) and cardiac arrest (12%). Sixty percent of patients treated with hydroxocobalamin had none of the six clinical indicators for potential cyanide toxicity. Carboxyhemoglobin and serum lactate were significantly different in patients that had a clinical indication for hydroxocobalamin compared to those who did not. CONCLUSIONS: Prehospital hydroxocobalamin was used empirically however, indications are unclear. Using defined clinical indications may provide greater clarity for providers and reduce unnecessary use of hydroxocobalamin.


Assuntos
Serviços Médicos de Emergência , Hidroxocobalamina/uso terapêutico , Lesão por Inalação de Fumaça/tratamento farmacológico , Complexo Vitamínico B/uso terapêutico , Adulto , Unidades de Queimados , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
16.
Nucleic Acids Res ; 47(12): 6236-6249, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-30982887

RESUMO

The tumor suppressor protein 53BP1 plays key roles in response to DNA double-strand breaks (DSBs) by serving as a master scaffold at the damaged chromatin. Current evidence indicates that 53BP1 assembles a cohort of DNA damage response (DDR) factors to distinctly execute its repertoire of DSB responses, including checkpoint activation and non-homologous end joining (NHEJ) repair. Here, we have uncovered LC8 (a.k.a. DYNLL1) as an important 53BP1 effector. We found that LC8 accumulates at laser-induced DNA damage tracks in a 53BP1-dependent manner and requires the canonical H2AX-MDC1-RNF8-RNF168 signal transduction cascade. Accordingly, genetic inactivation of LC8 or its interaction with 53BP1 resulted in checkpoint defects. Importantly, loss of LC8 alleviated the hypersensitivity of BRCA1-depleted cells to ionizing radiation and PARP inhibition, highlighting the 53BP1-LC8 module in counteracting BRCA1-dependent functions in the DDR. Together, these data establish LC8 as an important mediator of a subset of 53BP1-dependent DSB responses.


Assuntos
Dineínas do Citoplasma/fisiologia , Quebras de DNA de Cadeia Dupla , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Proteína BRCA1/genética , Linhagem Celular , Cromatina/metabolismo , Dineínas do Citoplasma/química , Dineínas do Citoplasma/metabolismo , Reparo do DNA , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases , Radiação Ionizante
17.
Circulation ; 140(1): 55-66, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-30982350

RESUMO

BACKGROUND: Membrane contact sites are fundamental for transmission and translation of signals in multicellular organisms. The junctional membrane complexes in the cardiac dyads, where transverse (T) tubules are juxtaposed to the sarcoplasmic reticulum, are a prime example. T-tubule uncoupling and remodeling are well-known features of cardiac disease and heart failure. Even subtle alterations in the association between T-tubules and the junctional sarcoplasmic reticulum can cause serious cardiac disorders. NEXN (nexilin) has been identified as an actin-binding protein, and multiple mutations in the NEXN gene are associated with cardiac diseases, but the precise role of NEXN in heart function and disease is still unknown. METHODS: Nexn global and cardiomyocyte-specific knockout mice were generated. Comprehensive phenotypic and RNA sequencing and mass spectrometry analyses were performed. Heart tissue samples and isolated single cardiomyocytes were analyzed by electron and confocal microscopy. RESULTS: Global and cardiomyocyte-specific loss of Nexn in mice resulted in a rapidly progressive dilated cardiomyopathy. In vivo and in vitro analyses revealed that NEXN interacted with junctional sarcoplasmic reticulum proteins, was essential for optimal calcium transients, and was required for initiation of T-tubule invagination and formation. CONCLUSIONS: These results demonstrated that NEXN is a pivotal component of the junctional membrane complex and is required for initiation and formation of T-tubules, thus providing insight into mechanisms underlying cardiomyopathy in patients with mutations in NEXN.


Assuntos
Cardiomiopatia Dilatada/metabolismo , Membrana Celular/metabolismo , Junções Intercelulares/metabolismo , Proteínas dos Microfilamentos/deficiência , Fibras Musculares Esqueléticas/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Canais de Cálcio Tipo L/metabolismo , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Membrana Celular/genética , Membrana Celular/patologia , Células Cultivadas , Junções Intercelulares/genética , Junções Intercelulares/patologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Fibras Musculares Esqueléticas/patologia , Miócitos Cardíacos/patologia
18.
Am J Physiol Renal Physiol ; 319(5): F895-F907, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33017185

RESUMO

The epithelial Na+ channel (ENaC) located at the apical membrane in many epithelia is the rate-limiting step for Na+ reabsorption. Tight regulation of the plasma membrane population of ENaC is required, as hypertension or hypotension may result if too many or too few ENaCs are present. Endocytosed ENaC travels to the early endosome and is then either trafficked to the lysosome for degradation or recycled back to the plasma membrane. Recently, the retromer recycling complex, located at the early endosome, has been implicated in plasma membrane protein recycling pathways. We hypothesized that the retromer is required for recycling of ENaC. Stabilization of retromer function with the retromer stabilizing chaperone R55 increased ENaC current, whereas knockdown or overexpression of individual retromer and associated proteins altered ENaC current and cell surface population of ENaC. KIBRA was identified as an ENaC-binding protein allowing ENaC to link to sorting nexin 4 to alter ENaC trafficking. Knockdown of the retromer-associated cargo-binding sorting nexin 27 protein did not alter ENaC current, whereas CCDC22, a CCC-complex protein, coimmunoprecipitated with ENaC, and CCDC22 knockdown decreased ENaC current and population at the cell surface. Together, our results confirm that retromer and the CCC complex play a role in recycling of ENaC to the plasma membrane.


Assuntos
Endossomos/metabolismo , Células Epiteliais/metabolismo , Canais Epiteliais de Sódio/metabolismo , Transporte Proteico/fisiologia , Membrana Celular/metabolismo , Movimento Celular/fisiologia , Endocitose/fisiologia , Células Epiteliais/fisiologia , Humanos , Sódio/metabolismo
19.
Mol Genet Metab ; 129(4): 272-277, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32151545

RESUMO

Methylmalonate semialdehyde dehydrogenase deficiency (MMSDD; MIM 614105) is a rare autosomal recessive defect of valine and pyrimidine catabolism. Four prior MMSDD cases are published. We present a fifth case, along with functional and metabolomic analysis. The patient, born to non-consanguineous parents of East African origin, was admitted at two weeks of age for failure to thrive. She was nondysmorphic, had a normal brain MRI, and showed mild hypotonia. Gastroesophageal reflux occurred with feeding. Urine organic acid assessment identified excess 3-hydroxyisobutyrate and 3-hydroxypropionate, while urine amino acid analysis identified elevated concentrations of ß-aminoisobutyrate and ß-alanine. Plasma amino acids showed an elevated concentration of ß-aminoisobutyrate with undetectable ß-alanine. ALDH6A1 gene sequencing identified a homozygous variant of uncertain significance, c.1261C > T (p.Pro421Ser). Management with valine restriction led to reduced concentration of abnormal analytes in blood and urine, improved growth, and reduced gastroesophageal reflux. Western blotting of patient fibroblast extracts demonstrated a large reduction of methylmalonate semialdehyde dehydrogenase (MMSD) protein. Patient cells displayed compromised mitochondrial function with increased superoxide production, reduced oxygen consumption, and reduced ATP production. Metabolomic profiles from patient fibroblasts demonstrated over-representation of fatty acids and fatty acylcarnitines, presumably due to methylmalonate semialdehyde shunting to ß-alanine and subsequently to malonyl-CoA with ensuing increase of fatty acid synthesis. Previously reported cases of MMSDD have shown variable clinical presentation. Our case continues the trend as clinical phenotypes diverge from prior cases. Recognition of mitochondrial dysfunction and novel metabolites in this patient provide the opportunity to assess future patients for secondary changes that may influence clinical outcome.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Metabolômica , Metilmalonato-Semialdeído Desidrogenase (Acilante)/deficiência , Mitocôndrias/metabolismo , Erros Inatos do Metabolismo da Purina-Pirimidina/diagnóstico , Erros Inatos do Metabolismo da Purina-Pirimidina/metabolismo , Biópsia , Linhagem Celular , Feminino , Fibroblastos/metabolismo , Humanos , Recém-Nascido , Metilmalonato-Semialdeído Desidrogenase (Acilante)/metabolismo , Fenótipo , Pele/patologia , Valina/sangue , Valina/metabolismo , Valina/urina
20.
Mol Genet Metab ; 131(1-2): 147-154, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32828637

RESUMO

Inborn errors of metabolism (IEM) involving the non-oxidative pentose phosphate pathway (PPP) include the two relatively rare conditions, transketolase deficiency and transaldolase deficiency, both of which can be difficult to diagnosis given their non-specific clinical presentations. Current biochemical testing approaches require an index of suspicion to consider targeted urine polyol testing. To determine whether a broad-spectrum biochemical test could accurately identify a specific metabolic pattern defining IEMs of the non-oxidative PPP, we employed the use of clinical metabolomic profiling as an unbiased novel approach to diagnosis. Subjects with molecularly confirmed IEMs of the PPP were included in this study. Targeted quantitative analysis of polyols in urine and plasma samples was accomplished with chromatography and mass spectrometry. Semi-quantitative unbiased metabolomic analysis of urine and plasma samples was achieved by assessing small molecules via liquid chromatography and high-resolution mass spectrometry. Results from untargeted and targeted analyses were then compared and analyzed for diagnostic acuity. Two siblings with transketolase (TKT) deficiency and three unrelated individuals with transaldolase (TALDO) deficiency were identified for inclusion in the study. For both IEMs, targeted polyol testing and untargeted metabolomic testing on urine and/or plasma samples identified typical perturbations of the respective disorder. Additionally, untargeted metabolomic testing revealed elevations in other PPP metabolites not typically measured with targeted polyol testing, including ribonate, ribose, and erythronate for TKT deficiency and ribonate, erythronate, and sedoheptulose 7-phosphate in TALDO deficiency. Non-PPP alternations were also noted involving tryptophan, purine, and pyrimidine metabolism for both TKT and TALDO deficient patients. Targeted polyol testing and untargeted metabolomic testing methods were both able to identify specific biochemical patterns indicative of TKT and TALDO deficiency in both plasma and urine samples. In addition, untargeted metabolomics was able to identify novel biomarkers, thereby expanding the current knowledge of both conditions and providing further insight into potential underlying pathophysiological mechanisms. Furthermore, untargeted metabolomic testing offers the advantage of having a single effective biochemical screening test for identification of rare IEMs, like TKT and TALDO deficiencies, that may otherwise go undiagnosed due to their generally non-specific clinical presentations.


Assuntos
Erros Inatos do Metabolismo dos Carboidratos/genética , Erros Inatos do Metabolismo/genética , Transaldolase/deficiência , Transaldolase/genética , Transcetolase/genética , Adulto , Biomarcadores/sangue , Erros Inatos do Metabolismo dos Carboidratos/sangue , Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Erros Inatos do Metabolismo dos Carboidratos/patologia , Criança , Pré-Escolar , Cromatografia Líquida , Feminino , Humanos , Lactente , Masculino , Espectrometria de Massas , Erros Inatos do Metabolismo/sangue , Erros Inatos do Metabolismo/metabolismo , Erros Inatos do Metabolismo/patologia , Metabolômica , Via de Pentose Fosfato/genética , Transaldolase/sangue , Transaldolase/metabolismo , Transcetolase/sangue , Transcetolase/deficiência , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA