RESUMO
We report the detection and quantification of nuclear spin incoherent scattering from hydrogen occupying interstitial sites in a thin film of vanadium. The neutron wave field is enhanced in a quantum resonator with magnetically switchable boundaries. Our results provide a pathway for the study of dynamics at surfaces and in ultrathin films using inelastic and/or quasielastic neutron scattering methods.
RESUMO
Grazing incidence neutron scattering experiments offer surface sensitivity by reflecting from an interface at momentum transfers close to total external reflection. Under these conditions the penetration depth is strongly non-linear and may change by many orders of magnitude. This fact imposes severe challenges for depth resolved experiments, since the brilliance of neutron beams is relatively low in comparison to e.g. synchrotron radiation. In this article we use probability density functions to calculate the contribution of scattering at different distances from an interface to the intensities registered on the detector. Our method has the particular advantage that the depth sensitivity is directly extracted from the scattering pattern itself. Hence for perfectly known samples exact resolution functions can be calculated and visa versa. We show that any tails in the resolution function, e.g. Gaussian shaped, hinders depth resolved experiments. More importantly we provide means for a descriptive statistical analysis of detector images with respect to the scattering contributions and show that even for perfect resolution near surface scattering is hardly accessible.
RESUMO
A target was prepared for cyclic neutron activation analysis by heat sealing lithium-carbonate in polyethylene. The target was cyclically irradiated 50 times using a Thermo-Scientific accelerator based deuterium-tritium fusion neutron generator. During counting periods, gamma-rays emitted by (16)N were detected using three high-purity germanium detectors acquiring data in list-mode. Total counts acquired in each spectrum were compared between the three detectors to examine variability in geometric positioning of the target and variability of the generator intensity throughout the experiment. These two effects were determined to be the primary sources of variation in the measured counts. Variation in target positioning and generator intensity were found to increase the standard deviation by 34% and 33%, respectively. Transit times to the detector were found to be slower and more variable than transit to the generator but were well below the half second threshold needed to measure short-lived radionuclides with half-lives on the order of seconds. The standard deviation in irradiation time was found to be less than 1 milliseconds. The impact on statistical variability in the measured counts was negligible relative to the two primary sources of variation. Spectra acquired from each cycle were summed together. The sum of the peak areas from the 6.1 MeV gamma-ray and its corresponding single and double escape peaks were used to measure the half-life of (16)N. The result of 7.108(15)seconds derived from data suggests that the currently published value of 7.13(2)seconds has minimal systematic bias induced by background.