Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Chem Inf Model ; 62(24): 6302-6308, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-35576624

RESUMO

Accurate, fast, and flexible approaches for contact angle estimation in molecular dynamics simulations are of great importance for characterization of surface wettability, especially for machine learning approaches which would usually require thousands of computational contact angle evaluations for training and prediction purposes. However, evaluation of the contact angle from molecular simulations is typically a human-intensive process, which hinders the required fast throughput. To address this challenge, here a flexible and automated contact angle estimation tool, ContactAngleCalculator, is developed to meet these new requirements. In contrast to the current widely used computational approaches that are laborious and human intensive, this code is based on the concepts of the coarse-graining technique and equivalent contact area and volume of the droplet. Once the parameters are determined for a target liquid, it can automatically estimate the contact angle of different time points of one case or multiple cases by only one click. This tool is targeted for integration with machine learning methods, in which it can substantially streamline and reduce human labor and time in a computational contact angle estimation.


Assuntos
Simulação de Dinâmica Molecular , Humanos , Molhabilidade
2.
Compos B Eng ; 242: 110060, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35754456

RESUMO

The transmission of the SARS-CoV-2 coronavirus has been shown through droplets generated by infected people when coughing, sneezing, or talking in close contact. These droplets either reach the next person directly or land on nearby surfaces. The objective of this study is to develop a novel, durable, and effective disinfecting antimicrobial (antiviral, antibacterial, and antifungal) styrene-ethylene/butylene-styrene (SEBS) based thermoplastic elastomers (TPE). TPE incorporated with six different formulations was investigated for mechanical and antiviral performance. The formulations consist of a combination of zinc pyrithione (ZnPT), sodium pentaborate pentahydrate (NaB), disodium octaborate tetrahydrate (DOT), and chlorhexidine (CHX). ZnPT and DOT incorporated TPE showed a reduction of microbes such as bacteria by up to 99.99%, deactivated Adenovirus, Poliovirus, Norovirus, and reduced a strain of the coronavirus family by 99.95% in 60 min on TPE samples. Control samples had higher tensile strengths among all formulations and tensile strength decreased by around 14%, 21% and 27% for ZnPT and DOT combinations compared to control samples. The elongation at break decreased by around 7%, 9% and 12% with ZnPT and DOT combinations, where it reached minimum values of 720%, 702% and 684%, respectively. The 100% Modulus and 300% Modulus slightly increased with ZnPT and NaB combination (reaching values from 1.6 to 1.9 MPa and 2.6-2.9 MPa respectively) in comparison with control samples. The MFI also decreased with antimicrobial and antiviral additives (decreasing values from 64.8 to 43.3 g/10 min). ZnPT and NaB combination showed the lowest MFI (43.3 g/10 min) and reduced the MFI of control sample by around 33%. TPE samples containing ZnPT and DOT combination showed biocidal activity against the microorganisms tested and can be used to develop antimicrobial products for multiple touchpoints within a vehicle and micro-mobility.

3.
Biomacromolecules ; 22(9): 3884-3891, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34337937

RESUMO

The use of cellulose has considerable promise in a wide range of industrial applications but is hampered by degradation in mechanical properties due to ambient moisture uptake. Existing models of equilibrium moisture content can predict the impact of these effects, but at present, the dynamical, atomic-scale picture of water ingress into cellulose is lacking. The present work reports nonequilibrium molecular simulations of the interface between cellulose and water aimed at capturing the initial stages of two simultaneous dynamical processes, water ingress into cellulose and cellulose dissolution into water. These simulations demonstrate that the process depends on the temperature and chain length in the amorphous region, where high temperatures can induce more mass exchange and short chains can easily detach from amorphous cellulose. A cooperative mechanism that involves both chemical and physical aspects, namely, hydrogen bonding and chain intertwining, respectively, is proposed to interpret the incipient dual ingress/dissolution process. Outcomes of this work will provide a foundation for cellulose functionalization strategies to impede moisture uptake and preserve the mechanical properties of nanocellulose in applications.


Assuntos
Celulose , Água , Ligação de Hidrogênio , Solubilidade , Temperatura
4.
Molecules ; 24(14)2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31336600

RESUMO

Lignin, while economically and environmentally beneficial, has had limited success in use in reinforcing carbon fibers due to harmful chemicals used in biomass pretreatment along with the limited physical interactions between lignin and polyacrylonitrile (PAN) during the spinning process. The focus of this study is to use lignin obtained from chemical-free oxidative biomass pretreatment (WEx) for blending with PAN at melt spinning conditions to produce carbon fiber precursors. In this study, the dynamic rheology of blending PAN with biorefinery lignin obtained from the WEx process is investigated with the addition of 1-butyl-3-methylimidazolium chloride as a plasticizer to address the current barriers of developing PAN/lignin carbon fiber precursors in the melt-spinning process. Lignin was esterified using butyric anhydride to reduce its hydrophilicity and to enhance its interactions with PAN. The studies indicate that butyration of the lignin (BL) increased non-Newtonian behavior and decreased thermo-reversibility of blends. The slope of the Han plot was found to be around 1.47 for PAN at 150 °C and decreased with increasing lignin concentrations as well as temperature. However, these blends were found to have higher elasticity and solution yield stress (47.6 Pa at 20%wt BL and 190 °C) when compared to pure PAN (5.8 Pa at 190 °C). The results from this study are significant for understanding lignin-PAN interactions during melt spinning for lower-cost carbon fibers.


Assuntos
Resinas Acrílicas/química , Líquidos Iônicos/química , Lignina/química , Fibra de Carbono , Fenômenos Químicos , Reologia , Análise Espectral
5.
Sci Rep ; 12(1): 20042, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36414651

RESUMO

A damping model is developed based on the mechanism of interfacial interaction in nanoscale particle reinforced composites. The model includes the elasticity of the materials and the effects of interfacial adhesion hysteresis. Specific results are given for the case of bio-based PA610 polyamide reinforced by nanocrystalline cellulose (CNC), based on a previous study that showed this composite possesses very high damping. The presence of hydrogen bonding at the interface between the particle and matrix and the large interfacial area due to the filler's nano size are shown to be the main causes of the high damping enhancement. The influence of other parameters, such as interfacial distance and stiffness of the matrix materials are also discussed. The modeling work can be used as a guide in designing composites with good damping properties.


Assuntos
Celulose , Nylons , Tensão Superficial , Elasticidade
6.
ACS Omega ; 7(19): 16705-16715, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35601301

RESUMO

An effective method that can produce a large amount of Kraft lignin with improved homogeneity is strongly desired for Kraft lignin's high-value applications and scientific advancements. Herein, a one-pot acid-catalyzed liquefaction method was developed to recover Kraft lignin directly from black liquor. The recovery rate and properties of the recovered lignin were affected by the reaction time, reaction temperature, moisture content (MC), pH, and acid categories. The highest lignin recovery rate of 75% was achieved when the concentrated black liquor (MC = 25%) reacted with methanol at pH = 7 and 160 °C for 10 min using acetic acid as the catalyst. Most of the recovered lignin from this method showed an average molecular weight (Mw) value less than 2000 Da and a polydispersity (PDI) value less than 2.0. Such a PDI value was lower than that of current acid precipitated lignin (around 2.2-5.4). The recovered lignin was directly used to replace 20% of the petroleum-based polyol in the formula of a flexible polyurethane (PU) foam, and it was found that the molecular weight characteristics of the lignin affected the physical and mechanical properties of the flexible PU foams. The recovered lignin with the Mw value of 1600 Da and the PDI value of 1.8 was able to maintain the major physical and mechanical properties of the flexible PU foams. This study provided a promising way to recover lignin with improved homogeneity from black liquor with the potential to customize lignin properties to meet the requirements of downstream processes.

7.
Polymers (Basel) ; 13(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34451201

RESUMO

The strive for utilization of green fillers in polymer composite has increased focus on application of natural biomass-based fillers. Biochar has garnered a lot of attention as a filler material and has the potential to replace conventionally used inorganic mineral fillers. Biochar is a carbon rich product obtained from thermochemical conversion of biomass in nitrogen environment. In this review, current studies dealing with incorporation of biochar in polymer matrices as a reinforcement and conductive filler were addressed. Each study mentioned here is nuanced, while addressing the same goal of utilization of biochar as a filler. In this review paper, an in-depth analysis of biochar and its structure is presented. The paper explored the various methods employed in fabrication of the biocomposites. A thorough review on the effect of addition of biochar on the overall composite properties showed immense promise in improving the overall composite properties. An analysis of the possible knowledge gaps was also done, and improvements were suggested. Through this study we tried to present the status of application of biochar as a filler material and its potential future applications.

8.
Polymers (Basel) ; 13(17)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34503044

RESUMO

This research investigated a feasible approach to fabricating electrically conductive knitted fabrics using previously wet-spun wool/polyacrylonitrile (PAN) composite fibre. In the production of the composite fibre, waste wool fibres and PAN were used, whereby both the control PAN (100% PAN) and wool/PAN composite fibres (25% wool) were knitted into fabrics. The knitted fabrics were coated with graphene oxide (GO) using the brushing and drying technique and then chemically reduced using hydrazine to introduce the electrical conductivity. The morphological study showed the presence of GO sheets wrinkles on the coated fabrics and their absence on reduced fabrics, which supports successful coating and a reduction of GO. This was further confirmed by the colour change properties of the fabrics. The colour strength (K/S) of the reduced control PAN and wool/PAN fabrics increased by ~410% and ~270%, and the lightness (L*) decreased ~65% and ~71%, respectively, compared to their pristine fabrics. The Fourier transform infrared spectroscopy showed the presence and absence of the GO functional groups along with the PAN and amide groups in the GO-coated and reduced fabrics. Similarly, the X-ray diffraction analysis exhibited a typical 2θ peak at 10° that represents the existence of GO, which was demolished after the reduction process. Moreover, the wool/PAN/reduced GO knitted fabrics showed higher electrical conductivity (~1.67 S/cm) compared to the control PAN/reduced GO knitted fabrics (~0.35 S/cm). This study shows the potential of fabricating electrically conductive fabrics using waste wool fibres and graphene that can be used in different application fields.

9.
Sci Rep ; 11(1): 12068, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103621

RESUMO

This work aims to evaluate the potential of using textile waste in smart textile applications in the form of a hybrid fibre with electrical properties. The bio-based electrically conductive fibres were fabricated from waste wool and polyacrylonitrile (PAN) via wet spinning with different wool content. The control PAN and hybrid fibre produced with the highest amount of wool content (25% w/v) were coated with graphene oxide (GO) using the "brushing and drying" technique. The GO nanosheets coated control PAN and wool/PAN hybrid fibres were chemically reduced through hydrazine vapour exposure. The Fourier transform infrared spectroscopy showed the presence of both protein and nitrile peaks in the wool/PAN hybrid fibres, although the amide I and amide A groups had disappeared, due to the dissolution of wool. The morphological and structural analysis revealed effective coating and reduction of the fibres through GO nanosheets and hydrazine, respectively. The hybrid fibre showed higher electrical conductivity (~ 180 S/cm) compared to the control PAN fibres (~ 95 S/cm), confirming an effective bonding between the hydroxyl and carboxylic groups of the GO sheets and the amino groups of wool evidenced by chemical analysis. Hence, the graphene oxide incorporated wool/PAN hybrid fibres may provide a promising solution for eco-friendly smart textile applications.

10.
Materials (Basel) ; 14(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807970

RESUMO

Globally, automotive manufacturers are looking for ways to produce environmentally sustainable and recyclable materials for automobiles to meet new regulations and customer desires. To enable the needs for rapid response, this study investigated the feasibility of using waste and virgin wool fibres as cost-effective and sustainable alternatives for automotive sound and heat insulation using a chemical-free approach. Several properties of the currently available commercial automotive insulators were investigated in order to facilitate the designing of green wool-based needle-punched nonwoven materials. The effect of fibre diameter, nonwoven surface, layer structure, thickness, and area density on sound absorption and thermal resistance was investigated. The results suggested that the wool nonwoven materials, fabricated using waste and virgin wool fibres, possessed extremely efficient acoustic and thermal insulating properties comparable with the currently used commercial synthetic insulating materials. Besides, the wool nonwoven materials showed identical antibacterial and antifungal properties with a greater biodegradation rate (50%) than that of the commercial synthetic insulating materials. Hence, this study showed that natural wool fibres have the potential to be used as green, lightweight, and sustainable materials in the automobiles, while they qualify for Reuse-Recycle and Reuse-Recover purposes at the end-of-life of vehicles.

11.
Materials (Basel) ; 12(19)2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31569447

RESUMO

: In the recent years, automakers have been striving to improve the carbon footprint of their vehicles. Sustainable composites, consisting of natural fibers, and/or recycled polymers have been developed as a way to increase the "green content" and reduce the weight of a vehicle. In addition, recent studies have found that the introduction of synthetic fibers to a traditional fiber composite such as glass filled plastics, producing a composite with multiple fillers (hybrid fibers), can result in superior mechanical properties. The objective of this work was to investigate the effect of hybrid fibers on characterization and material properties of polyamide-6 (PA6)/polypropylene (PP) blends. Cellulose and glass fibers were used as fillers and the mechanical, water absorption, and morphological properties of composites were evaluated. The addition of hybrid fibers increased the stiffness (tensile and flexural modulus) of the composites. Glass fibers reduced composite water absorption while the addition of cellulose fibers resulted in higher composite stiffness. The mechanical properties of glass and cellulose filled PA6/PP composites were optimized at loading levels of 15 wt% glass and 10 wt% cellulose, respectively.

12.
Waste Manag ; 71: 97-108, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29113836

RESUMO

Striving to utilize sustainable material sources, polyester polyols made via glycolysis and esterification of recycled polyethylene terephthalate (rPET) scrap were used to synthesize flexible polyurethane (PU) foams typically found in automotive interior applications. The objective of this endeavor was to ascertain if a closed-loop model could be established with the discarded PET feedstock. In five separate formulations, up to 50% of the total polyol content (traditionally derived from petroleum-based feedstock) was replaced with the afore-mentioned sustainable recycled polyols. These foams underwent mechanical, thermal, morphological, and physical characterization testing to determine feasibility for use in an automotive interior. Young's modulus, tensile stress at maximum load, tear resistance, and compression modulus all increased by combined averages of 121%, 67%, 32%, and 150% over the control petroleum-based formulation, respectively, in foams possessing 50% rPET polyol content. Thermal stability also increased with sustainable polyol content; thermogravimetric analysis showed that 50% mass loss temperature increased by an average of 20 °C in foams containing 30% recycled polyol. Properties of density and SAG factor remained within 5% of the control petroleum-based reference foams. After comparing these findings to traditional polyols, a compelling argument can be made for the use of post-consumer automotive and industrial feedstocks in developing high-performing interior automotive PU foams.


Assuntos
Poliésteres , Reciclagem , Temperatura , Termogravimetria
13.
Materials (Basel) ; 12(1)2018 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-30597959

RESUMO

Thermoplastic resins (linear low-density polyethylene (LLDPE), high-density polyethylene (HDPE), and polypropylene (PP)) reinforced by different content ratios of raw agave fibers were prepared and characterized in terms of their mechanical, thermal, and chemical properties as well as their morphology. The morphological properties of agave fibers and films were characterized by scanning electron microscopy and the variations in chemical interactions between the filler and matrix materials were studied using Fourier-transform infrared spectroscopy. No significant chemical interaction between the filler and matrix was observed. Melting point and crystallinity of the composites were evaluated for the effect of agave fiber on thermal properties of the composites, and modulus and yield strength parameters were inspected for mechanical analysis. While addition of natural fillers did not affect the overall thermal properties of the composite materials, elastic modulus and yielding stress exhibited direct correlation to the filler content and increased as the fiber content was increased. The highest elastic moduli were achieved with 20 wt % agave fiber for all the three composites. The values were increased by 319.3%, 69.2%, and 57.2%, for LLDPE, HDPE, and PP, respectively. The optimum yield stresses were achieved with 20 wt % fiber for LLDPE increasing by 84.2% and with 30 wt % for both HDPE and PP, increasing by 52% and 12.3% respectively.

14.
Carbohydr Polym ; 136: 1144-51, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26572457

RESUMO

A unique three dimensional (3D) porous structured bacterial cellulose (BC) can act as a supporting material to deposit the nanofillers in order to create advanced BC-based functional nanomaterials for various technological applications. In this study, novel nanocomposites comprised of BC with exfoliated graphite nanoplatelets (xGnP) incorporated into the BC matrix were prepared using a simple particle impregnation strategy to enhance the thermal properties and electrical conductivity of the BC. The flake-shaped xGnP particles were well dispersed and formed a continuous network throughout the BC matrix. The temperature at 10% weight loss, thermal stability and residual ash content of the nanocomposites increased at higher xGnP loadings. The electrical conductivity of the composites increased with increasing xGnP loading (attaining values 0.75 S/cm with the addition of 2 wt.% of xGnP). The enhanced conductive and thermal properties of the BC-xGnP nanocomposites will broaden applications (biosensors, tissue engineering, etc.) of BC and xGnP.


Assuntos
Celulose/química , Condutividade Elétrica , Grafite/química , Nanocompostos/química , Acetobacter/química , Estabilidade de Medicamentos , Temperatura
15.
Carbohydr Polym ; 140: 393-9, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-26876866

RESUMO

The elastic moduli of PLA reinforced with 5 and 10wt.% CNF with the carrier, at a frequency (ω) of 0.07, were 67% and 415% higher, respectively, than that of neat PLA. The shear viscosity at a shear rate of 0.01 (η0.01) for PLA+10wt.% CNF was 32% higher than that of the neat PLA matrix. The η0.01 of PLA reinforced with 5wt.% CNF and the PHB carrier was similar to neat PLA. The tensile and flexural moduli of elasticity of the nanocomposites continuously increased with increased CNF loading. The results of the mechanical property measurements are in accordance with the rheological data. The CNF appeared to be better dispersed (less-aggregated nanofibers) in the PLA reinforced with 5wt.% CNF and the PHB carrier. Possible applications for the composites studied in this research are packaging materials, construction materials, and auto parts for interior applications.


Assuntos
Celulose/química , Nanofibras/química , Poliésteres/química , Embalagem de Alimentos , Fenômenos Mecânicos , Reologia
16.
Carbohydr Polym ; 124: 131-8, 2015 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-25839803

RESUMO

Bacterial cellulose (BC), a type of nanopolymer produced by Acetobacter xylinum is a nanostructured material with unique properties and wide applicability. However, a standard medium used for the cultivation of BC, the Hestrin-Schramm medium, is expensive and prevents wide scale extension of BC applications. In this research, a relatively low-cost culture media was successfully developed from wood hot water extracts for the Acetobacter xylinus 23769 strain. Hot water extract (HWE) is a residual material originating from pulp mills and lignocellulosic biorefineries and consists of mainly monomeric sugars, organic acids and organics. The effects of different pH (5, 6, 7 and 8) and temperatures (26, 28 and 30°C) were also examined in this research. There were no significant differences in the crystallinity and the recorded Iα fraction of cellulose produced between Hestrin-Schramm and the HWE medium. The maximum production of 0.15g/l of BC was obtained at a pH of 8 and temperature of 28°C. Glucose and xylose in the HWE were the main nutrient sources utilized in all BC cultivations based on high-pressure liquid chromatography (HPLC) results. HWE was shown to be a suitable carbon source for BC production, and a process was established for BC production from lignocellulosic feedstocks without using any modification of the HWE. HWE is an abundant and relatively inexpensive forest by-product. Using HWE for BC production could reduce burdens on the environment and also, achieve the goal of large scale BC production at low cost without using added culture nutrients.


Assuntos
Celulose/biossíntese , Gluconacetobacter xylinus/metabolismo , Glucose/metabolismo , Madeira/química , Xilose/metabolismo , Meios de Cultura/metabolismo , Glucose/isolamento & purificação , Temperatura Alta , Xilose/isolamento & purificação
17.
Carbohydr Polym ; 127: 381-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25965497

RESUMO

Nanocomposites of polymethylmethacrylate (PMMA) and cellulose were made by a solution casting method using acetone as the solvent. The nanofiber networks were prepared using three different types of cellulose nanofibers: (i) nanofibrillated cellulose (NFC), (ii) cellulose nanocrystals (CNC) and (iii) bacterial cellulose from nata de coca (NDC). The loading of cellulose nanofibrils in the PMMA varied between 0.25 and 0.5 wt%. The mechanical properties of the composites were evaluated using a dynamic mechanical thermal analyzer (DMTA). The flexural modulus of the nanocomposites reinforced with NDC at the 0.5 wt% loading level increased 23% compared to that of pure PMMA. The NFC composite also exhibited a slightly increased flexural strength around 60 MPa while PMMA had a flexural strength of 57 MPa. The addition of NDC increased the storage modulus (11%) compared to neat PMMA at room temperature while the storage modulus of PPMA/CNC nanocomposite containing 0.25 and 0.5 wt% cellulose increased about 46% and 260% to that of the pure PMMA at the glass transition temperature, respectively. Thermogravimetric analysis (TGA) indicated that there was no significant change in thermal stability of the composites. The UV-vis transmittance of the CNF nanocomposites decreased by 9% and 27% with the addition of 0.25 wt% CNC and NDC, respectively. This work is intended to spur research and development activity for application of CNF reinforced PMMA nanocomposites in applications such as: packaging, flexible screens, optically transparent films and light-weight transparent materials for ballistic protection.


Assuntos
Celulose/química , Nanocompostos/química , Polimetil Metacrilato/química , Acetobacter/química , Acetobacter/metabolismo , Acetona/química , Celulose/biossíntese , Solventes/química
18.
Carbohydr Polym ; 129: 148-55, 2015 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-26050900

RESUMO

The unique micro-nano porous three-dimensional network of bacterial cellulose (BC) can facilitate the incorporation of nanoparticles (NPs) into the BC matrix to create advanced BC-based functional nanomaterials for diverse applications. In this study, novel nanomaterials comprised of bacterial cellulose (BC) synthesized in the presence of different NPs (cellulose nanofibrils (CNF), exfoliated graphite nanoplatelets (xGnP), and nanoclay (NC)) were prepared using an in situ approach. NPs at 0.5 wt.% loading were added into the BC culture medium and their effect on the resulting nanocomposite structure was studied by field emission scanning electron microscopy (FE-SEM), X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). All BC-based nanomaterials produced, exhibited good dispersion of the NPs within the BC matrix and the NPs were found embedded among the voids and microfibrils. The thermal stability and residual mass of BC-xGnP and BC-NC nanomaterials was significantly increased compared with the neat BC. CNF incorporation into the BC matrix did not change the thermal stability and residual mass of the BC matrix. This study also provides novel insights into the properties of the hybrid materials, and shows the approach used to make these materials which results in increased performance for chosen applications.


Assuntos
Materiais Biocompatíveis/síntese química , Celulose/biossíntese , Nanopartículas/química , Celulose/ultraestrutura , Cristalização , Grafite/química , Nanofibras/ultraestrutura , Nanopartículas/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Termogravimetria , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA