Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 573(7772): 108-111, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31462777

RESUMO

Climate change has led to concerns about increasing river floods resulting from the greater water-holding capacity of a warmer atmosphere1. These concerns are reinforced by evidence of increasing economic losses associated with flooding in many parts of the world, including Europe2. Any changes in river floods would have lasting implications for the design of flood protection measures and flood risk zoning. However, existing studies have been unable to identify a consistent continental-scale climatic-change signal in flood discharge observations in Europe3, because of the limited spatial coverage and number of hydrometric stations. Here we demonstrate clear regional patterns of both increases and decreases in observed river flood discharges in the past five decades in Europe, which are manifestations of a changing climate. Our results-arising from the most complete database of European flooding so far-suggest that: increasing autumn and winter rainfall has resulted in increasing floods in northwestern Europe; decreasing precipitation and increasing evaporation have led to decreasing floods in medium and large catchments in southern Europe; and decreasing snow cover and snowmelt, resulting from warmer temperatures, have led to decreasing floods in eastern Europe. Regional flood discharge trends in Europe range from an increase of about 11 per cent per decade to a decrease of 23 per cent. Notwithstanding the spatial and temporal heterogeneity of the observational record, the flood changes identified here are broadly consistent with climate model projections for the next century4,5, suggesting that climate-driven changes are already happening and supporting calls for the consideration of climate change in flood risk management.


Assuntos
Mudança Climática/estatística & dados numéricos , Inundações/estatística & dados numéricos , Rios , Mudança Climática/história , Europa (Continente) , Inundações/história , Inundações/prevenção & controle , Mapeamento Geográfico , História do Século XX , História do Século XXI , Chuva , Estações do Ano , Fatores de Tempo
2.
Protein Expr Purif ; 186: 105910, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34089870

RESUMO

Expression of recombinant proteins traditionally require a cellular system to transcribe and translate foreign DNA to a desired protein. The process requires special knowledge of the specific cellular metabolism in use and is often time consuming and labour intensive. A cell free expression system provides an opportunity to express recombinant proteins without consideration of the living cell. Instead, a cell free system relies on either a cellular lysate or recombinant proteins to carry out protein synthesis, increasing overall production speed and ease of handling. The one-pot cell free setup is commonly known as an in vitro transcription/translation reaction (IVTT). Here we focused on a PURE (Protein synthesis Using Recombinant Elements) IVTT system based on recombinant proteins from Escherichia coli. We evaluated the cell free system's ability to express functional insulin analogues compared to Saccharomyces cerevisiae, a well-established system for large scale production of recombinant human insulin and insulin analogues. Significantly, it was found that correct insulin expression and folding was governed by the inherent properties of the primary amino acids sequence of insulin, whereas the eukaryotic features of the expression system apparently play a minor role. The IVTT system successfully produced insulin analogues identical in structure and with similar insulin receptor affinity to those produced by yeast. In conclusion we demonstrate that the PURE IVTT system is highly suited for expressing soluble molecules with higher order features and multiple disulphide bridges.


Assuntos
Sistema Livre de Células , Proteínas Recombinantes , Saccharomyces cerevisiae , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Insulina/análise , Insulina/química , Insulina/genética , Insulina/metabolismo , Biossíntese de Proteínas/genética , Engenharia de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
3.
Diabetes Obes Metab ; 21(10): 2294-2304, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31183936

RESUMO

AIMS: We previously quantified the hypoglycaemia-sparing effect of portal vs peripheral human insulin delivery. The current investigation aimed to determine whether a bioequivalent peripheral vein infusion of a hepatopreferential insulin analog, insulin-406, could similarly protect against hypoglycaemia. MATERIALS AND METHODS: Dogs received human insulin infusions into either the hepatic portal vein (PoHI, n = 7) or a peripheral vein (PeHI, n = 7) for 180 minutes at four-fold the basal secretion rate (6.6 pmol/kg/min) in a previous study. Insulin-406 (Pe406, n = 7) was peripherally infused at 6.0 pmol/kg/min, a rate determined to decrease plasma glucose by the same amount as with PoHI infusion during the first 60 minutes. Glucagon was fixed at basal concentrations, mimicking the diminished α-cell response seen in type 1 diabetes. RESULTS: Glucose dropped quickly with PeHI infusion, reaching 41 ± 3 mg/dL at 60 minutes, but more slowly with PoHI and Pe406 infusion (67 ± 2 and 72 ± 4 mg/dL, respectively; P < 0.01 vs PeHI for both). The hypoglycaemic nadir (c. 40 mg/dL) occurred at 60 minutes with PeHI infusion vs 120 minutes with PoHI and Pe406 infusion. ΔAUCepinephrine during the 180-minute insulin infusion period was two-fold higher with PeHI infusion compared with PoHI and Pe406 infusion. Glucose production (mg/kg/min) was least suppressed with PeHI infusion (Δ = 0.79 ± 0.33) and equally suppressed with PoHI and Pe406 infusion (Δ = 1.16 ± 0.21 and 1.18 ± 0.17, respectively; P = NS). Peak glucose utilization (mg/kg/min) was highest with PeHI infusion (4.94 ± 0.17) and less with PoHI and Pe406 infusion (3.58 ± 0.58 and 3.26 ± 0.08, respectively; P < 0.05 vs Pe for both). CONCLUSIONS: Peripheral infusion of hepatopreferential insulin can achieve a metabolic profile that closely mimics portal insulin delivery, which reduces the risk of hypoglycaemia compared with peripheral insulin infusion.


Assuntos
Hipoglicemiantes , Insulina Regular Humana , Insulina , Veia Porta/metabolismo , Animais , Glicemia/análise , Glicemia/metabolismo , Diabetes Mellitus Tipo 1 , Cães , Gluconeogênese , Humanos , Hipoglicemia/metabolismo , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacologia , Infusões Intravenosas , Insulina/administração & dosagem , Insulina/análogos & derivados , Insulina/sangue , Insulina/farmacologia , Insulina Regular Humana/administração & dosagem , Insulina Regular Humana/farmacologia , Fígado/metabolismo , Masculino
4.
Crit Rev Environ Sci Technol ; 46(23-24): 1787-1833, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28757789

RESUMO

Flooding is known to facilitate infectious disease transmission, yet quantitative research on microbiological risks associated with floods has been limited. Pathogen fate and transport models provide a framework to examine interactions between landscape characteristics, hydrology, and waterborne disease risks, but have not been widely developed for flood conditions. We critically examine capabilities of current hydrological models to represent unusual flow paths, non-uniform flow depths, and unsteady flow velocities that accompany flooding. We investigate the theoretical linkages between hydrodynamic processes and spatio-temporally variable suspension and deposition of pathogens from soils and sediments; pathogen dispersion in flow; and concentrations of constituents influencing pathogen transport and persistence. Identifying gaps in knowledge and modeling practice, we propose a research agenda to strengthen microbial fate and transport modeling applied to inland floods: 1) development of models incorporating pathogen discharges from flooded sources (e.g., latrines), effects of transported constituents on pathogen persistence, and supply-limited pathogen transport; 2) studies assessing parameter identifiability and comparing model performance under varying degrees of process representation, in a range of settings; 3) development of remotely sensed datasets to support modeling of vulnerable, data-poor regions; and 4) collaboration between modelers and field-based researchers to expand the collection of useful data in situ.

5.
Chembiochem ; 16(6): 954-8, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25754940

RESUMO

Here we report, for the first time, the heterologous expression of desB30 guinea pig insulin (GI desB30) in the yeast Saccharomyces cerevisiae. The affinities of GI desB30 for the insulin receptor A and the IGF-I receptor were also quantified for the first time. Small-angle X-ray scattering and analytical ultracentrifugation studies confirmed that GI desB30 did not form dimers or hexamers, in contrast to human insulin. Size-exclusion chromatography connected to inductively coupled plasma mass spectrometry revealed that GI desB30 has affinity towards several divalent metal ions. These studies did not indicate the formation of any larger structures of GI desB30 in the presence of various divalent metal ions, but did indicate that GI desB30 has an affinity towards Mn, Co, and Cu ions. Finally, the low affinity for the insulin receptor and the very low affinity for the IGF-I receptor by GI desB30 were quantified.


Assuntos
Fenômenos Biofísicos , Insulina/genética , Insulina/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Sequência de Aminoácidos , Animais , Expressão Gênica , Cobaias , Humanos , Insulina/química , Dados de Sequência Molecular , Ligação Proteica , Saccharomyces cerevisiae/genética
6.
J Pept Sci ; 21(11): 797-806, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26382042

RESUMO

Insulin, a small peptide hormone, is crucial in maintaining blood glucose homeostasis. The stability and activity of the protein is directed by an intricate system involving disulfide bonds to stabilize the active monomeric species and by their non-covalent oligomerization. All known insulin variants in vertebrates consist of two peptide chains and have six cysteine residues, which form three disulfide bonds, two of them link the two chains and a third is an intra-chain bond in the A-chain. This classical insulin fold appears to have been conserved over half a billion years of evolution. We addressed the question whether a human insulin variant with four disulfide bonds could exist and be fully functional. In this review, we give an overview of the road to engineering four-disulfide bonded insulin analogs. During our journey, we discovered several active four disulfide bonded insulin analogs with markedly improved stability and gained insights into the instability of analogs with seven cysteine residues, importance of dimerization for stability, insulin fibril formation process, and the conformation of insulin binding to its receptor. Our results also open the way for new strategies in the development of insulin biopharmaceuticals.


Assuntos
Cistina/química , Diabetes Mellitus Tipo 1/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Insulina Regular Humana/análogos & derivados , Modelos Moleculares , Receptor de Insulina/agonistas , Substituição de Aminoácidos , Animais , Antígenos CD/química , Antígenos CD/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Dimerização , Desenho de Fármacos , Estabilidade de Medicamentos , Humanos , Hipoglicemiantes/química , Insulina Regular Humana/química , Insulina Regular Humana/genética , Insulina Regular Humana/uso terapêutico , Mutação , Conformação Proteica , Engenharia de Proteínas , Estabilidade Proteica , Receptor de Insulina/química , Receptor de Insulina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/uso terapêutico
7.
Trends Biotechnol ; 42(4): 464-478, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37880066

RESUMO

Since the first administration of insulin to a person with diabetes in 1922, scientific contributions from academia and industry have improved insulin therapy and access. The pharmaceutical need for insulin is now more than 40 tons annually, half of which is produced by recombinant secretory expression in Saccharomyces cerevisiae. We discuss how, in this yeast species, adaptation of insulin precursors by removable structural elements is pivotal for efficient secretory expression. The technologies reviewed have been implemented at industrial scale and are seminal for the supply of human insulin and insulin analogues to people with diabetes now and in the future. Engineering of a target protein with removable structural elements may provide a general approach to yield optimisation.


Assuntos
Diabetes Mellitus , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Insulina/genética , Proteínas Recombinantes/metabolismo
8.
Eur J Pharm Biopharm ; 201: 114375, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38897553

RESUMO

An inter-drug approach, applying pharmacokinetic information for insulin analogs in different animal species, rat, dog and pig, performed better compared to allometric scaling for human translation of intra-venous half-life and only required data from a single animal species for reliable predictions. Average fold error (AFE) between 1.2-1.7 were determined for all species and for multispecies allometric scaling AFE was 1.9. A slightly larger prediction error for human half-life was determined from in vitro human insulin receptor affinity data (AFE on 2.3-2.6). The requirements for the inter-drug approach were shown to be a span of at least 2 orders of magnitude in half-life for the included drugs and a shared clearance mechanism. The insulin analogs in this study were the five fatty acid protracted analogs: Insulin degludec, insulin icodec, insulin 320, insulin 338 and insulin 362, as well as the non-acylated analog insulin aspart.


Assuntos
Hipoglicemiantes , Insulina , Animais , Humanos , Ratos , Cães , Meia-Vida , Suínos , Insulina/farmacocinética , Insulina/administração & dosagem , Insulina/análogos & derivados , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/administração & dosagem , Insulina de Ação Prolongada/farmacocinética , Insulina de Ação Prolongada/administração & dosagem , Especificidade da Espécie , Receptor de Insulina/metabolismo , Insulina Aspart/farmacocinética , Insulina Aspart/administração & dosagem
9.
Innovation (Camb) ; 5(2): 100588, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38440259

RESUMO

The combination of urbanization and global warming leads to urban overheating and compounds the frequency and intensity of extreme heat events due to climate change. Yet, the risk of urban overheating can be mitigated by urban green-blue-grey infrastructure (GBGI), such as parks, wetlands, and engineered greening, which have the potential to effectively reduce summer air temperatures. Despite many reviews, the evidence bases on quantified GBGI cooling benefits remains partial and the practical recommendations for implementation are unclear. This systematic literature review synthesizes the evidence base for heat mitigation and related co-benefits, identifies knowledge gaps, and proposes recommendations for their implementation to maximize their benefits. After screening 27,486 papers, 202 were reviewed, based on 51 GBGI types categorized under 10 main divisions. Certain GBGI (green walls, parks, street trees) have been well researched for their urban cooling capabilities. However, several other GBGI have received negligible (zoological garden, golf course, estuary) or minimal (private garden, allotment) attention. The most efficient air cooling was observed in botanical gardens (5.0 ± 3.5°C), wetlands (4.9 ± 3.2°C), green walls (4.1 ± 4.2°C), street trees (3.8 ± 3.1°C), and vegetated balconies (3.8 ± 2.7°C). Under changing climate conditions (2070-2100) with consideration of RCP8.5, there is a shift in climate subtypes, either within the same climate zone (e.g., Dfa to Dfb and Cfb to Cfa) or across other climate zones (e.g., Dfb [continental warm-summer humid] to BSk [dry, cold semi-arid] and Cwa [temperate] to Am [tropical]). These shifts may result in lower efficiency for the current GBGI in the future. Given the importance of multiple services, it is crucial to balance their functionality, cooling performance, and other related co-benefits when planning for the future GBGI. This global GBGI heat mitigation inventory can assist policymakers and urban planners in prioritizing effective interventions to reduce the risk of urban overheating, filling research gaps, and promoting community resilience.

10.
Nat Rev Drug Discov ; 22(1): 59-80, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36002588

RESUMO

Peptides and proteins are widely used to treat a range of medical conditions; however, they often have to be injected and their effects are short-lived. These shortcomings of the native structure can be addressed by molecular engineering, but this is a complex undertaking. A molecular engineering technology initially applied to insulin - and which has now been successfully applied to several biopharmaceuticals - entails the derivatization of peptides and proteins with fatty acids. Various protraction mechanisms are enabled by the specific characteristics and positions of the attached fatty acid. Furthermore, the technology can ensure a long half-life following oral administration of peptide drugs, can alter the distribution of peptides and may hold potential for tissue targeting. Due to the inherent safety and well-defined chemical nature of the fatty acids, this technology provides a versatile approach to peptide and protein drug discovery.


Assuntos
Descoberta de Drogas , Ácidos Graxos , Proteínas , Humanos , Ácidos Graxos/química , Insulina/química , Peptídeos/química , Proteínas/química
11.
Biochem J ; 440(3): 301-8, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21851336

RESUMO

The relative expression patterns of the two IR (insulin receptor) isoforms, +/- exon 11 (IR-B/IR-A respectively), are tissue-dependent. Therefore we have developed insulin analogues with different binding affinities for the two isoforms to test whether tissue-preferential biological effects can be attained. In rats and mice, IR-B is the most prominent isoform in the liver (> 95%) and fat (> 90%), whereas in muscles IR-A is the dominant isoform (> 95%). As a consequence, the insulin analogue INS-A, which has a higher relative affinity for human IR-A, had a higher relative potency [compared with HI (human insulin)] for glycogen synthesis in rat muscle strips (26%) than for glycogen accumulation in rat hepatocytes (5%) and for lipogenesis in rat adipocytes (4%). In contrast, the INS-B analogue, which has an increased affinity for human IR-B, had higher relative potencies (compared with HI) for inducing glycogen accumulation (75%) and lipogenesis (130%) than for affecting muscle (45%). For the same blood-glucose-lowering effect upon acute intravenous dosing of mice, INS-B gave a significantly higher degree of IR phosphorylation in liver than HI. These in vitro and in vivo results indicate that insulin analogues with IR-isoform-preferential binding affinity are able to elicit tissue-selective biological responses, depending on IR-A/IR-B expression.


Assuntos
Hipoglicemiantes/farmacologia , Insulina/análogos & derivados , Receptor de Insulina/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Ligação Competitiva , Glicemia , Encéfalo/metabolismo , Células Cultivadas , Expressão Gênica , Glicogênio/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Insulina/farmacologia , Rim/metabolismo , Lipogênese/efeitos dos fármacos , Fígado/citologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Especificidade de Órgãos , Fosforilação , Cultura Primária de Células , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor de Insulina/agonistas , Receptor de Insulina/genética , Baço/metabolismo , Sus scrofa
12.
Environ Int ; 164: 107227, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35561597

RESUMO

Antimicrobial agent (AA) usage, excretion, and persistence are all important factors in association with the occurrence and dissemination of antimicrobial resistance. Urban water profiling was utilised in the Eerste River catchment (South Africa) to establish AA usage in a region where comprehensive prescription records were not readily available and where portions of the community did not have sufficient access to sanitation. This technique enabled the environmental exposure to be quantified throughout the catchment area and the identification of contamination hotspots. Monitoring occurred over a 11-month period. 812 samples were processed using UPLC-MS/MS for the quantitation of 56 antimicrobials and 26 of their metabolites. Spatiotemporal trends were established, with consideration to community behaviour, seasonal changes, and physiochemical properties of the analytes. The Eerste River samples collected upstream from the town of Stellenbosch had the lowest AA loads (<4 g/day), unafflicted by industrial presence and with only small impact from farming activities. This was followed by sites downstream from a wastewater treatment plant (serving 178 K people). The measurement of low AA loads (influent: 500-800 g/day and effluent 50-100 g/day), indicates a high efficiency of wastewater treatment, allowing for an effective reduction of AA and a lower environmental burden. This is compared to river sites that receive untreated waste from communities in informal settlements (6-12 K people) that are not connected to the sewer infrastructure (with AA levels accounting for 100-600 g/day). Temporal trends exhibited reduced daily loads during the summer to early autumn (Nov-May). This is likely due to seasonal patterns in community health and/or notable changes in rainfall and temperatures at the sampling locations throughout the year. However, weather patterns are also important to consider - particularly for the river sites. South Africa has notable rainfall and temperature seasonality. Antiretrovirals (ARV), emtricitabine and lamivudine, were the most prevalent drugs throughout the monitoring campaign, followed by tuberculosis drugs and sulfonamides. ARVs were, however, effectively reduced via wastewater treatment processes (>97%). This was also the case for beta-lactams, nitrofurantoin, and trimethoprim. The treatment efficacy for other drugs was more variable, that did not appear to have temporal significance.


Assuntos
Antifúngicos , Poluentes Químicos da Água , Antibacterianos , Antivirais , Cromatografia Líquida , Monitoramento Ambiental/métodos , Humanos , África do Sul , Espectrometria de Massas em Tandem , Águas Residuárias/análise , Água , Poluentes Químicos da Água/análise
13.
J Med Chem ; 65(3): 2633-2645, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35104142

RESUMO

Here, we describe molecular engineering of monovalent ultra-long acting two-chain insulin-Fc conjugates. Insulin-Fc conjugates were synthesized using trifunctional linkers with one amino reactive group for reaction with a lysine residue of insulin and two thiol reactive groups used for re-bridging of a disulfide bond within the Fc molecule. The ultra-long pharmacokinetic profile of the insulin-Fc conjugates was the result of concertedly slowing insulin receptor-mediated clearance by (1) introduction of amino acid substitutions that lowered the insulin receptor affinity and (2) conjugating insulin to the Fc element. Fc conjugation leads to recycling by the neonatal Fc receptor and increase in the molecular size, both contributing to the ultra-long pharmacokinetic and pharmacodynamic profiles.


Assuntos
Hipoglicemiantes/síntese química , Imunoconjugados/química , Fragmentos Fc das Imunoglobulinas/química , Insulina de Ação Prolongada/síntese química , Sequência de Aminoácidos , Animais , Linhagem Celular , Diabetes Mellitus Experimental/tratamento farmacológico , Humanos , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/uso terapêutico , Imunoconjugados/farmacocinética , Imunoconjugados/uso terapêutico , Fragmentos Fc das Imunoglobulinas/farmacologia , Fragmentos Fc das Imunoglobulinas/uso terapêutico , Insulina de Ação Prolongada/farmacocinética , Insulina de Ação Prolongada/uso terapêutico , Masculino , Mesocricetus , Engenharia de Proteínas , Ratos Sprague-Dawley
14.
Chembiochem ; 12(16): 2448-55, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21905194

RESUMO

Chemical modifications of proteins are increasingly important in the development of protein drugs with fine-tuned properties. Regioselective modification, such as the chemoselective alkylation of an unpaired cysteine residue, is a prerequisite for obtaining homogenous protein products. The introduction of an unpaired Cys into the Cys-rich protein, insulin, was investigated by using a Cys scan. This was challenging as the introduced Cys could interfere with insulin's three existing disulfide bonds. However, eight insulin precursors were expressed in Saccharomyces cerevisiae with good yields. Although extensive post-translational modifications of the unpaired Cys were observed, the majority could be removed by selective reduction. An example Cys(7) insulin analogue was modified with a PEGylated maleimide moiety. The new variant was active in in vitro and in vivo models. Our results show that even small Cys-rich proteins can be expressed with additional unpaired Cys in meaningful yields and further chemically modified, while maintaining their biological activity.


Assuntos
Cisteína/química , Insulina/análogos & derivados , Alquilação , Animais , Cromatografia Líquida de Alta Pressão , Dissulfetos/química , Insulina/genética , Insulina/metabolismo , Masculino , Maleimidas/química , Polietilenoglicóis/química , Ratos , Ratos Wistar , Estereoisomerismo , Espectrometria de Massas em Tandem
15.
Trends Pharmacol Sci ; 42(8): 620-639, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34148677

RESUMO

The life-saving discovery of insulin in Toronto in 1921 is one of the most impactful achievements in medical history, at the time being hailed as a miracle treatment for diabetes. The insulin molecule itself, however, is poorly amenable as a pharmacological intervention, and the formidable challenge of optimizing insulin therapy has been ongoing for a century. We review early academic insights into insulin structure and its relation to self-association and receptor binding, as well as recombinant biotechnology, which have all been seminal for drug design. Recent developments have focused on combining genetic and chemical engineering with pharmaceutical optimization to generate ultra-rapid and ultra-long-acting, tissue-selective, or orally delivered insulin analogs. We further discuss these developments and propose that future scientific efforts in molecular engineering include realizing the dream of glucose-responsive insulin delivery.


Assuntos
Diabetes Mellitus , Insulina , Diabetes Mellitus/tratamento farmacológico , Humanos , Insulina/metabolismo , Ligação Proteica
16.
Front Psychol ; 12: 806424, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35002899

RESUMO

Motor imagery-based brain-computer interfaces (MI-BCI) have been proposed as a means for stroke rehabilitation, which combined with virtual reality allows for introducing game-based interactions into rehabilitation. However, the control of the MI-BCI may be difficult to obtain and users may face poor performance which frustrates them and potentially affects their motivation to use the technology. Decreases in motivation could be reduced by increasing the users' sense of agency over the system. The aim of this study was to understand whether embodiment (ownership) of a hand depicted in virtual reality can enhance the sense of agency to reduce frustration in an MI-BCI task. Twenty-two healthy participants participated in a within-subject study where their sense of agency was compared in two different embodiment experiences: 1) avatar hand (with body), or 2) abstract blocks. Both representations closed with a similar motion for spatial congruency and popped a balloon as a result. The hand/blocks were controlled through an online MI-BCI. Each condition consisted of 30 trials of MI-activation of the avatar hand/blocks. After each condition a questionnaire probed the participants' sense of agency, ownership, and frustration. Afterwards, a semi-structured interview was performed where the participants elaborated on their ratings. Both conditions supported similar levels of MI-BCI performance. A significant correlation between ownership and agency was observed (r = 0.47, p = 0.001). As intended, the avatar hand yielded much higher ownership than the blocks. When controlling for performance, ownership increased sense of agency. In conclusion, designers of BCI-based rehabilitation applications can draw on anthropomorphic avatars for the visual mapping of the trained limb to improve ownership. While not While not reducing frustration ownership can improve perceived agency given sufficient BCI performance. In future studies the findings should be validated in stroke patients since they may perceive agency and ownership differently than able-bodied users.

17.
Artigo em Inglês | MEDLINE | ID: mdl-34413118

RESUMO

INTRODUCTION: Insulin icodec is a novel, long-acting insulin analog designed to cover basal insulin requirements with once-weekly subcutaneous administration. Here we describe the molecular engineering and the biological and pharmacological properties of insulin icodec. RESEARCH DESIGN AND METHODS: A number of in vitro assays measuring receptor binding, intracellular signaling as well as cellular metabolic and mitogenic responses were used to characterize the biological properties of insulin icodec. To evaluate the pharmacological properties of insulin icodec in individuals with type 2 diabetes, a randomized, double-blind, double-dummy, active-controlled, multiple-dose, dose escalation trial was conducted. RESULTS: The long half-life of insulin icodec was achieved by introducing modifications to the insulin molecule aiming to obtain a safe, albumin-bound circulating depot of insulin icodec, providing protracted insulin action and clearance. Addition of a C20 fatty diacid-containing side chain imparts strong, reversible albumin binding, while three amino acid substitutions (A14E, B16H and B25H) provide molecular stability and contribute to attenuating insulin receptor (IR) binding and clearance, further prolonging the half-life. In vitro cell-based studies showed that insulin icodec activates the same dose-dependent IR-mediated signaling and metabolic responses as native human insulin (HI). The affinity of insulin icodec for the insulin-like growth factor-1 receptor was proportionately lower than its binding to the IR, and the in vitro mitogenic effect of insulin icodec in various human cells was low relative to HI. The clinical pharmacology trial in people with type 2 diabetes showed that insulin icodec was well tolerated and has pharmacokinetic/pharmacodynamic properties that are suited for once-weekly dosing, with a mean half-life of 196 hours and close to even distribution of glucose-lowering effect over the entire dosing interval of 1 week. CONCLUSIONS: The molecular modifications introduced into insulin icodec provide a novel basal insulin with biological and pharmacokinetic/pharmacodynamic properties suitable for once-weekly dosing. TRIAL REGISTRATION NUMBER: NCT02964104.


Assuntos
Diabetes Mellitus Tipo 2 , Insulina , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Hipoglicemiantes/farmacologia , Insulina de Ação Prolongada , Insulina Regular Humana
18.
J Med Chem ; 64(1): 616-628, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33356257

RESUMO

Recently, the first basal oral insulin (OI338) was shown to provide similar treatment outcomes to insulin glargine in a phase 2a clinical trial. Here, we report the engineering of a novel class of basal oral insulin analogues of which OI338, 10, in this publication, was successfully tested in the phase 2a clinical trial. We found that the introduction of two insulin substitutions, A14E and B25H, was needed to provide increased stability toward proteolysis. Ultralong pharmacokinetic profiles were obtained by attaching an albumin-binding side chain derived from octadecanedioic (C18) or icosanedioic acid (C20) to the lysine in position B29. Crucial for obtaining the ultralong PK profile was also a significant reduction of insulin receptor affinity. Oral bioavailability in dogs indicated that C18-based analogues were superior to C20-based analogues. These studies led to the identification of the two clinical candidates OI338 and OI320 (10 and 24, respectively).


Assuntos
Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Acilação , Administração Oral , Sequência de Aminoácidos , Animais , Disponibilidade Biológica , Preparações de Ação Retardada , Cães , Meia-Vida , Humanos , Hipoglicemiantes/farmacocinética , Insulina/química , Insulina/farmacocinética , Ratos
19.
J Med Chem ; 64(13): 8942-8950, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-33944562

RESUMO

Here, we describe the molecular engineering of insulin icodec to achieve a plasma half-life of 196 h in humans, suitable for once-weekly subcutaneously administration. Insulin icodec is based on re-engineering of the ultra-long oral basal insulin OI338 with a plasma half-life of 70 h in humans. This systematic re-engineering was accomplished by (1) further increasing the albumin binding by changing the fatty diacid from a 1,18-octadecanedioic acid (C18) to a 1,20-icosanedioic acid (C20) and (2) further reducing the insulin receptor affinity by the B16Tyr → His substitution. Insulin icodec was selected by screening for long intravenous plasma half-life in dogs while ensuring glucose-lowering potency following subcutaneous administration in rats. The ensuing structure-activity relationship resulted in insulin icodec. In phase-2 clinical trial, once-weekly insulin icodec provided safe and efficacious glycemic control comparable to once-daily insulin glargine in type 2 diabetes patients. The structure-activity relationship study leading to insulin icodec is presented here.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Animais , Cães , Esquema de Medicação , Humanos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/química , Injeções Intravenosas , Injeções Subcutâneas , Insulina/administração & dosagem , Insulina/análogos & derivados , Masculino , Ratos , Ratos Sprague-Dawley
20.
ACS Omega ; 5(31): 19827-19833, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32803078

RESUMO

Covalent cross-linking of biomolecules can be useful in pursuit of tissue targeting or dual targeting of two receptors on cell surfaces for avidity effects. Long linkers (>10 kDa) can be advantageous for such purposes, and poly(ethylene glycol) (PEG) linkers are most commonly used due to the high aqueous solubility of PEG and its relative inertness toward biological targets. However, PEG is non-biodegradable, and available PEG linkers longer than 5 kDa are heterogeneous (polydisperse), which means that conjugates based on such materials will be mixtures. We describe here recombinant linkers of distinct lengths, which can be expressed in yeast, which are polar, and which carry orthogonal reactivity at each end of the linker, thus allowing chemoselective cross-linking of proteins. A conjugate between insulin and either of the two trypsin inhibitor peptides/proteins exemplifies the technology, using a GQAP-based linker of molecular weight of 17 848, having one amine at the N-terminal, and one Cys, at the C-terminal. Notably, yeast-based expression systems typically give products with mixed disulfides when expressing proteins that are equipped with one unpaired Cys, namely, mixed disulfides with glutathione, free Cys amino acid, and/or a protein homodimer. To obtain a homogeneous linker, we worked out conditions for transforming the linker with mixed disulfides into a linker with a homogeneous disulfide, using excess 4-mercaptophenylacetic acid. Subsequently, the N-terminal amine of the linker was transformed into an azide, and the C-terminal Cys disulfide was reduced to a free thiol and reacted with halo-acetyl insulin. The N-terminal azide was finally conjugated to either of the two types of alkyne-containing trypsin inhibitor peptides/proteins. This reaction sequence allowed the cross-linked proteins to carry internal disulfides, as no reduction step was needed after protein conjugations. The insulin-trypsin inhibitor conjugates were shown to be stabilized toward enzymatic digestions and to have partially retained binding to the insulin receptor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA