Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2442, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37117223

RESUMO

Voltage-gated sodium (NaV) channels are critical regulators of neuronal excitability and are targeted by many toxins that directly interact with the pore-forming α subunit, typically via extracellular loops of the voltage-sensing domains, or residues forming part of the pore domain. Excelsatoxin A (ExTxA), a pain-causing knottin peptide from the Australian stinging tree Dendrocnide excelsa, is the first reported plant-derived NaV channel modulating peptide toxin. Here we show that TMEM233, a member of the dispanin family of transmembrane proteins expressed in sensory neurons, is essential for pharmacological activity of ExTxA at NaV channels, and that co-expression of TMEM233 modulates the gating properties of NaV1.7. These findings identify TMEM233 as a previously unknown NaV1.7-interacting protein, position TMEM233 and the dispanins as accessory proteins that are indispensable for toxin-mediated effects on NaV channel gating, and provide important insights into the function of NaV channels in sensory neurons.


Assuntos
Toxinas Biológicas , Urtica dioica , Austrália , Dor , Peptídeos , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo
2.
Eur J Pharmacol ; 925: 175013, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35537491

RESUMO

QX-314 is a quaternary permanently charged lidocaine derivative that inhibits voltage-gated sodium channels (NaV). As it is membrane impermeable, it is generally considered that QX-314 applied externally is inactive, unless it can gain access to the internal local anesthetic binding site via another entry pathway. Here, we characterized the electrophysiological effects of QX-314 on NaV1.7 heterologously expressed in HEK293 cells, and found that at high concentrations, external QX-314 inhibited NaV1.7 current (IC50 2.0 ± 0.3 mM) and shifted the voltage-dependence to more depolarized potentials (ΔV50 +10.6 mV). Unlike lidocaine, the activity of external QX-314 was not state- or use-dependent. The effect of externally applied QX-314 on NaV1.7 channel biophysics differed to that of internally applied QX-314, suggesting QX-314 has an additional externally accessible site of action. In line with this hypothesis, disruption of the local anesthetic binding site in a [F1748A]NaV1.7 mutant reduced the potency of lidocaine by 40-fold, but had no effect on the potency or activity of externally applied QX-314. Therefore, we conclude, using an expression system where QX-314 was unable to cross the membrane, that externally applied QX-314 is able to inhibit NaV1.7 peak current at low millimolar concentrations.


Assuntos
Anestésicos Locais , Lidocaína , Anestésicos Locais/farmacologia , Células HEK293 , Humanos , Lidocaína/análogos & derivados , Lidocaína/farmacologia , Sódio/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA