Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Acta Oncol ; 58(2): 232-236, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30444161

RESUMO

BACKGROUND: In patients diagnosed with rectal cancer, dose escalation is currently being investigated in a large number of studies. Since there is little known on gross tumor volume (GTV) inter-fraction motion for rectal cancer, a wide variety in margins is used. Purpose of this study is to quantify GTV inter-fraction motion statistics on different timescales and to give estimates of planning target volume (PTV) margins. MATERIAL AND METHODS: Thirty-two patients, diagnosed with rectal cancer, were included. To investigate motion from week-to-week, 16 patients underwent a pretreatment and five weekly MRIs, prior to a radiotherapy (RT) fraction of the chemoradiotherapy treatment. To investigate motion from day-to-day, the remaining 16 patients underwent five daily MRIs before each fraction in one week of RT. GTV was delineated on all scans according to guidelines. Scans were aligned on bony anatomy with the first MRI. For both datasets separately, GTV inter-fraction motion was determined based on center-of-gravity displacement. Therefrom, systematic and random errors were determined in left/right (LR), anterior/posterior and cranial/caudal (CC) direction. PTV margin estimates were calculated and evaluated on GTV coverage. RESULTS: Systematic and random errors were found in the range of 2.3-4.8 mm and 1.5-3.3 mm from week-to-week, and 1.8-4.5 mm and 1.8-4.0 mm from day-to-day, respectively. On both timescales, similar motion patterns were found; the most motion was observed in CC whilst the least motion was observed in LR. On the week-to-week data more systematic and less random motion was observed compared to the day-to-day data. Overall, only slight differences in margin estimates were found. Derived PTV margin estimates were found to give adequate GTV coverage. CONCLUSION: GTV inter-fraction motion, on a week-to-week and day-to-day timescale, can be accounted for using motion statistics presented in this study.


Assuntos
Fracionamento da Dose de Radiação , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Planejamento da Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem , Neoplasias Retais/radioterapia , Adulto , Idoso , Conjuntos de Dados como Assunto/estatística & dados numéricos , Feminino , Seguimentos , Humanos , Imageamento por Ressonância Magnética/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Planejamento da Radioterapia Assistida por Computador/métodos , Planejamento da Radioterapia Assistida por Computador/estatística & dados numéricos , Erros de Configuração em Radioterapia/estatística & dados numéricos , Radioterapia Adjuvante , Radioterapia Guiada por Imagem/métodos , Radioterapia Guiada por Imagem/normas , Radioterapia Guiada por Imagem/estatística & dados numéricos , Neoplasias Retais/epidemiologia , Neoplasias Retais/patologia , Fatores de Tempo , Carga Tumoral/fisiologia
2.
Eur Radiol ; 26(5): 1311-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26318370

RESUMO

OBJECTIVES: To evaluate the MRI macroscopic and microscopic parameters of mesorectal vasculature in rectal cancer patients. METHODS: Thirteen patients with rectal adenocarcinoma underwent a dynamic contrast-enhanced MRI at 1.5 T using a blood pool agent at the primary staging. Mesorectal macrovascular features, i.e., the number of vascular branches, average diameter and length, were assessed from baseline-subtracted post-contrast images by two independent readers. Mesorectal microvascular function was investigated by means of area under the enhancement-time curve (AUC). Histopathology served as reference standard of the tumour response to CRT. RESULTS: The average vessel branching in the mesorectum around the tumour and normal rectal wall was 8.2 ± 3.8 and 1.7 ± 1.3, respectively (reader1: p = 0.001, reader2: p = 0.002). Similarly, the tumour-surrounding mesorectum displayed circa tenfold elevated AUC (p = 0.01). Interestingly, patients with primary node involvement had a twofold higher number of macrovascular branches compared to those with healthy nodes (reader1: p = 0.005 and reader2: p = 0.03). A similar difference was observed between good and poor responders to CRT, whose tumour-surrounding mesorectum displayed 10.7 ± 3.4 and 5.6 ± 1.5 vessels, respectively (reader1/reader2: p = 0.02). CONCLUSIONS: We showed at baseline MRI of rectal tumours a significantly enhanced macrovascular structure and microvascular function in rectal tumour-surrounding mesorectum, and the association of primary mesorectal macrovascular parameters with node involvement and therapy response. KEY POINTS: • Vascular MRI reveals macrovascular and microvascular abnormalities in the rectal tumour-surrounding mesorectum. • Formation of highly vascular stroma precedes the actual tumour invasion. • High macrovascular parameters are associated with node involvement. • Mesorectal vascular network differs for good and poor responders.


Assuntos
Adenocarcinoma/irrigação sanguínea , Adenocarcinoma/patologia , Imageamento por Ressonância Magnética/métodos , Neoplasias Retais/irrigação sanguínea , Neoplasias Retais/patologia , Malformações Vasculares/patologia , Idoso , Meios de Contraste , Feminino , Humanos , Aumento da Imagem , Masculino , Estudos Prospectivos , Reto/irrigação sanguínea , Reto/patologia
3.
Radiat Oncol ; 13(1): 61, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29615067

RESUMO

BACKGROUND: Rectal cancer patients that show a pathological complete response (pCR) after neo-adjuvant chemo-radiotherapy, have better prognosis. To increase pCR rates several studies escalate the tumor irradiation dose. However, due to lacking tumor contrast on online imaging techniques, no direct tumor setup can be performed and large boost margins are needed to ensure tumor coverage. The purpose of this study was to evaluate the feasibility of performing a setup on rectal wall for rectal cancer boost radiotherapy, thereby using rectal wall nearby the tumor as tumor position surrogate. METHODS: For sixteen patients, daily MRI's were performed during 1 week of radiotherapy. On each of these images, tumor and rectum were delineated. Residual displacements were determined per surface voxel after setup on bony anatomy or nearby rectal wall and setup errors for both setups were compared. Furthermore for every rectal wall voxel nearby the tumor, displacement was compared with the closest tumor point and correlation was determined. RESULTS: Mean (SD) setup error was 2.7 mm (3.3 mm) and 2.2 mm (3.2 mm) after setup on bony anatomy and rectal wall respectively. Nevertheless, similar PTV-margin estimates i.e. 95th percentile distances, were found; 8.0 mm. Also, a merely moderate correlation; ρ = 0.66 was found between rectal wall and tumor displacement. Further investigation into tumor and rectal mobility differences showed that the rectal wall lacks appropriate anatomical landmarks to find true displacements, especially to capture motion along the rectal wall. CONCLUSIONS: Setup on rectal wall slightly reduces mean setup errors but requires a similar PTV-margin as compared to setup on bony anatomy. Rectal mobility might be similar to tumor mobility, but due the absence of anatomical landmarks in the rectum, displacements along the rectal wall are not detected on current online imaging. Therefore, to further reduce tumor position uncertainties, direct or indirect online tumor visualization is needed.


Assuntos
Neoplasias Retais/diagnóstico por imagem , Neoplasias Retais/radioterapia , Reto/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia Conformacional/métodos
4.
Phys Med Biol ; 61(1): 1-11, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26605518

RESUMO

Reduction of motion uncertainty by applying adaptive radiotherapy strategies depends largely on the temporal behavior of this motion. To fully optimize adaptive strategies, insight into target motion is needed. The purpose of this study was to analyze stability and evolution in time of motion uncertainty of both the gross tumor volume (GTV) and clinical target volume (CTV) for patients with rectal cancer. We scanned 16 patients daily during one week, on a 1.5 T MRI scanner in treatment position, prior to each radiotherapy fraction. Single slice sagittal cine MRIs were made at the beginning, middle, and end of each scan session, for one minute at 2 Hz temporal resolution. GTV and CTV motion were determined by registering a delineated reference frame to time-points later in time. The 95th percentile of observed motion (dist95%) was taken as a measure of motion. The stability of motion in time was evaluated within each cine-MRI separately. The evolution of motion was investigated between the reference frame and the cine-MRIs of a single scan session and between the reference frame and the cine-MRIs of several days later in the course of treatment. This observed motion was then converted into a PTV-margin estimate. Within a one minute cine-MRI scan, motion was found to be stable and small. Independent of the time-point within the scan session, the average dist95% remains below 3.6 mm and 2.3 mm for CTV and GTV, respectively 90% of the time. We found similar motion over time intervals from 18 min to 4 days. When reducing the time interval from 18 min to 1 min, a large reduction in motion uncertainty is observed. A reduction in motion uncertainty, and thus the PTV-margin estimate, of 71% and 75% for CTV and tumor was observed, respectively. Time intervals of 15 and 30 s yield no further reduction in motion uncertainty compared to a 1 min time interval.


Assuntos
Radioterapia de Intensidade Modulada/métodos , Neoplasias Retais/radioterapia , Adulto , Idoso , Feminino , Humanos , Imagem Cinética por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Movimento (Física) , Incerteza
5.
Trials ; 16: 58, 2015 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-25888548

RESUMO

BACKGROUND: Treatment for locally advanced rectal cancer (LARC) consists of chemoradiation therapy (CRT) and surgery. Approximately 15% of patients show a pathological complete response (pCR). Increased pCR-rates can be achieved through dose escalation, thereby increasing the number patients eligible for organ-preservation to improve quality of life (QoL). A randomized comparison of 65 versus 50Gy with external-beam radiation alone has not yet been performed. This trial investigates pCR rate, clinical response, toxicity, QoL and (disease-free) survival in LARC patients treated with 65Gy (boost + chemoradiation) compared with 50Gy standard chemoradiation (sCRT). METHODS/DESIGN: This study follows the 'cohort multiple randomized controlled trial' (cmRCT) design: rectal cancer patients are included in a prospective cohort that registers clinical baseline, follow-up, survival and QoL data. At enrollment, patients are asked consent to offer them experimental interventions in the future. Eligible patients-histologically confirmed LARC (T3NxM0 <1 mm from mesorectal fascia, T4NxM0 or TxN2M0) located ≤10 cm from the anorectal transition who provided consent for experimental intervention offers-form a subcohort (n = 120). From this subcohort, a random sample is offered the boost prior to sCRT (n = 60), which they may accept or refuse. Informed consent is signed only after acceptance of the boost. Non-selected patients in the subcohort (n = 60) undergo sCRT alone and are not notified that they participate in the control arm until the trial is completed. sCRT consists of 50Gy (25 × 2Gy) with concomitant capecitabine. The boost (without chemotherapy) is given prior to sCRT and consists of 15 Gy (5 × 3Gy) delivered to the gross tumor volume (GTV). The primary endpoint is pCR (TRG 1). Secondary endpoints include acute grade 3-4 toxicity, good pathologic response (TRG 1-2), clinical response, surgical complications, QoL and (disease-free) survival. Data is analyzed by intention to treat. DISCUSSION: The boost is delivered prior to sCRT so that GTV adjustment for tumor shrinkage during sCRT is not necessary. Small margins also aim to limit irradiation of healthy tissue. The cmRCT design provides opportunity to overcome common shortcomings of classic RCTs, such as slow recruitment, disappointment-bias in control arm patients and poor generalizability. TRIAL REGISTRATION: The Netherlands Trials Register NL46051.041.13. Registered 22 August 2013. ClinicalTrials.gov NCT01951521 . Registered 18 September 2013.


Assuntos
Quimiorradioterapia , Protocolos Clínicos , Neoplasias Retais/terapia , Interpretação Estatística de Dados , Humanos , Imageamento por Ressonância Magnética , Órgãos em Risco , Qualidade de Vida , Neoplasias Retais/patologia , Neoplasias Retais/psicologia , Projetos de Pesquisa , Tamanho da Amostra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA