Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Int J Mol Sci ; 22(19)2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34639081

RESUMO

The aim of this work was to show an efficient, recombinant DNA-free, multiplex gene-editing method using gRNA:Cas9 ribonucleoprotein (RNP) complexes delivered directly to plant protoplasts. For this purpose, three RNPs were formed in the tube, their activity was confirmed by DNA cleavage in vitro, and then they were delivered to carrot protoplasts incubated with polyethylene glycol (PEG). After 48 h of incubation, single nucleotide deletions and insertions and small deletions at target DNA sites were identified by using fluorescent-PCR capillary electrophoresis and sequencing. When two or three RNPs were delivered simultaneously, long deletions of 33-152 nt between the gRNA target sites were generated. Such mutations occurred with an efficiency of up to 12%, while the overall editing effectiveness was very high, reaching 71%. This highly efficient multiplex gene-editing method, without the need for recombinant DNA technology, can be adapted to other plants for which protoplast culture methods have been established.


Assuntos
Sistemas CRISPR-Cas , Daucus carota/genética , Edição de Genes , Engenharia Genética/métodos , Polietilenoglicóis/química , RNA Guia de Cinetoplastídeos , Ribonucleoproteínas/metabolismo , Daucus carota/crescimento & desenvolvimento , Daucus carota/metabolismo , Genoma de Planta , Protoplastos , Ribonucleoproteínas/genética
2.
Int J Mol Sci ; 22(6)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805827

RESUMO

The Streptococcus pyogenes Cas9 protein (SpCas9), a component of CRISPR-based immune system in microbes, has become commonly utilized for genome editing. This nuclease forms a ribonucleoprotein (RNP) complex with guide RNA (gRNA) which induces Cas9 structural changes and triggers its cleavage activity. Here, electronic circular dichroism (ECD) spectroscopy was used to confirm the RNP formation and to determine its individual components. The ECD spectra had characteristic features differentiating Cas9 and gRNA, the former showed a negative/positive profile with maxima located at 221, 209 and 196 nm, while the latter revealed positive/negative/positive/negative pattern with bands observed at 266, 242, 222 and 209 nm, respectively. For the first time, the experimental ECD spectrum of the gRNA:Cas9 RNP complex is presented. It exhibits a bisignate positive/negative ECD couplet with maxima at 273 and 235 nm, and it differs significantly from individual spectrum of each RNP components. Additionally, the Cas9 protein and RNP complex retained biological activity after ECD measurements and they were able to bind and cleave DNA in vitro. Hence, we conclude that ECD spectroscopy can be considered as a quick and non-destructive method of monitoring conformational changes of the Cas9 protein as a result of Cas9 and gRNA interaction, and identification of the gRNA:Cas9 RNP complex.


Assuntos
Proteína 9 Associada à CRISPR/química , Sistemas CRISPR-Cas , DNA/química , RNA Guia de Cinetoplastídeos/química , Ribonucleoproteínas/química , Streptococcus pyogenes/química , Pareamento de Bases , Sequência de Bases , Sítios de Ligação , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Dicroísmo Circular , DNA/genética , DNA/metabolismo , Edição de Genes/métodos , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Streptococcus pyogenes/enzimologia
3.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204559

RESUMO

Recent data indicate that modifications to carotenoid biosynthesis pathway in plants alter the expression of genes affecting chemical composition of the cell wall. Phytoene synthase (PSY) is a rate limiting factor of carotenoid biosynthesis and it may exhibit species-specific and organ-specific roles determined by the presence of psy paralogous genes, the importance of which often remains unrevealed. Thus, the aim of this work was to elaborate the roles of two psy paralogs in a model system and to reveal biochemical changes in the cell wall of psy knockout mutants. For this purpose, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR associated (Cas9) proteins (CRISPR/Cas9) vectors were introduced to carotenoid-rich carrot (Daucus carota) callus cells in order to induce mutations in the psy1 and psy2 genes. Gene sequencing, expression analysis, and carotenoid content analysis revealed that the psy2 gene is critical for carotenoid biosynthesis in this model and its knockout blocks carotenogenesis. The psy2 knockout also decreased the expression of the psy1 paralog. Immunohistochemical staining of the psy2 mutant cells showed altered composition of arabinogalactan proteins, pectins, and extensins in the mutant cell walls. In particular, low-methylesterified pectins were abundantly present in the cell walls of carotenoid-rich callus in contrast to the carotenoid-free psy2 mutant. Transmission electron microscopy revealed altered plastid transition to amyloplasts instead of chromoplasts. The results demonstrate for the first time that the inhibited biosynthesis of carotenoids triggers the cell wall remodelling.


Assuntos
Vias Biossintéticas/genética , Sistemas CRISPR-Cas , Carotenoides/metabolismo , Parede Celular/metabolismo , Daucus carota/fisiologia , Edição de Genes , Sequência de Bases , Parede Celular/ultraestrutura , Daucus carota/ultraestrutura , Marcação de Genes , Genes de Plantas , Vetores Genéticos/genética , Mutação , Fenótipo , Plastídeos/genética , Plastídeos/ultraestrutura
4.
Planta ; 248(6): 1455-1471, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30132151

RESUMO

MAIN CONCLUSION: The new model orange callus line, similar to carrot root, was rich in carotenoids due to altered expression of some carotenogenesis-associated genes and possessed unique diversity of chromoplast ultrastructure. Callus induced from carrot root segments cultured in vitro is usually pale yellow (p-y) and poor in carotenoids. A unique, non-engineered callus line of dark orange (d-o) colour was developed in this work. The content of carotenoid pigments in d-o callus was at the same level as in an orange carrot storage root and nine-fold higher than in p-y callus. Carotenoids accumulated mainly in abundant crystalline chromoplasts that are also common in carrot root but not in p-y callus. Using transmission electron microscopy, other types of chromoplasts were also found in d-o callus, including membranous chromoplasts rarely identified in plants and not observed in carrot root until now. At the transcriptional level, most carotenogenesis-associated genes were upregulated in d-o callus in comparison to p-y callus, but their expression was downregulated or unchanged when compared to root tissue. Two pathway steps were critical and could explain the massive carotenoid accumulation in this tissue. The geranylgeranyl diphosphate synthase gene involved in the biosynthesis of carotenoid precursors was highly expressed, while the ß-carotene hydroxylase gene involved in ß-carotene conversion to downstream xanthophylls was highly repressed. Additionally, paralogues of these genes and phytoene synthase were differentially expressed, indicating their tissue-specific roles in carotenoid biosynthesis and metabolism. The established system may serve as a novel model for elucidating plastid biogenesis that coincides with carotenogenesis.


Assuntos
Carotenoides/metabolismo , Daucus carota/metabolismo , Oxigenases de Função Mista/metabolismo , Vias Biossintéticas , Daucus carota/genética , Daucus carota/ultraestrutura , Oxigenases de Função Mista/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/ultraestrutura , Plastídeos/metabolismo , Plastídeos/ultraestrutura , beta Caroteno/metabolismo
5.
Physiol Plant ; 164(3): 290-306, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29572860

RESUMO

Iodine is a beneficial element for humans but very lowly represented in our diet. Iodine-enriched vegetables could boost the iodine content in the food chain. Despite being a beneficial element for plants, little is known about the effect of different iodine forms on plant growth. This work analyses the effect of uptake of mineral (KI) and organoiodine (5-iodosalicylic acid, 5-ISA; 3,5-diiodosalicylic acid, 3,5-di-ISA; 2-iodobenzoic acid, 2-IBeA; 4-iodobenzoic acid, 4-IBeA) compounds on tomato plants at an early stage of vegetative growth. As many organoiodine compounds are derived from salicylic (SA) and benzoic acids (BeA), treatments with I, SA and BeA in various treatments were realized and the influence of tested compounds on plant growth was analyzed. Iodine content was measured, as well as expression of key genes involved in I and SA metabolism. Organoiodine compounds accumulated mainly in roots whereas iodine accumulated in the upper parts when given as KI. The shoot system had 5, 12 and 25 times higher iodine content after KI treatment than after 4-IBeA, 5-ISA and 2-IBeA, or 3,5-diISA treatments, respectively. A toxic effect on plants was observed only for 3,5-diISA and 4-IBeA. The expression levels of a gene related to iodine metabolism (HMT, halide ion methylotransferase), a gene responsible for SA methylation in leaves (SAMT) and a gene related to SA catabolism (S3H, salicylic acid 3-hydroxylase) were modified differently depending on the iodine source. Overall, our data point out to a difference in plant uptake, transport of iodine in tomato plants based on the form of iodine compound.


Assuntos
Iodo/farmacologia , Compostos Orgânicos/farmacologia , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/metabolismo , Benzoatos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Ácido Salicílico/metabolismo
6.
Plant Cell Rep ; 37(4): 575-586, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29332168

RESUMO

KEY MESSAGE: The first report presenting successful and efficient carrot genome editing using CRISPR/Cas9 system. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated (Cas9) is a powerful genome editing tool that has been widely adopted in model organisms recently, but has not been used in carrot-a model species for in vitro culture studies and an important health-promoting crop grown worldwide. In this study, for the first time, we report application of the CRISPR/Cas9 system for efficient targeted mutagenesis of the carrot genome. Multiplexing CRISPR/Cas9 vectors expressing two single-guide RNA (gRNAs) targeting the carrot flavanone-3-hydroxylase (F3H) gene were tested for blockage of the anthocyanin biosynthesis in a model purple-colored callus using Agrobacterium-mediated genetic transformation. This approach allowed fast and visual comparison of three codon-optimized Cas9 genes and revealed that the most efficient one in generating F3H mutants was the Arabidopsis codon-optimized AteCas9 gene with up to 90% efficiency. Knockout of F3H gene resulted in the discoloration of calli, validating the functional role of this gene in the anthocyanin biosynthesis in carrot as well as providing a visual marker for screening successfully edited events. Most resulting mutations were small Indels, but long chromosome fragment deletions of 116-119 nt were also generated with simultaneous cleavage mediated by two gRNAs. The results demonstrate successful site-directed mutagenesis in carrot with CRISPR/Cas9 and the usefulness of a model callus culture to validate genome editing systems. Given that the carrot genome has been sequenced recently, our timely study sheds light on the promising application of genome editing tools for boosting basic and translational research in this important vegetable crop.


Assuntos
Sistemas CRISPR-Cas , Daucus carota/genética , Edição de Genes/métodos , Genoma de Planta/genética , Sequência de Bases , Daucus carota/citologia , Modelos Genéticos , Mutagênese Sítio-Dirigida , Plantas Geneticamente Modificadas , RNA Guia de Cinetoplastídeos/genética , Homologia de Sequência do Ácido Nucleico
7.
Sci Rep ; 13(1): 21506, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057586

RESUMO

Soil salinity adversely affects the yield and quality of crops, including carrot. During salt stress, plant growth and development are impaired by restricted water uptake and ion cytotoxicity, leading to nutrient imbalance and oxidative burst. However, the molecular mechanisms of the carrot plant response to salt stress remain unclear. The occurrence and expression of miRNAs that are potentially involved in the regulation of carrot tolerance to salinity stress were investigated. The results of small RNA sequencing revealed that salt-sensitive (DH1) and salt-tolerant (DLBA) carrot varieties had different miRNA expression profiles. A total of 95 miRNAs were identified, including 71 novel miRNAs, of which 30 and 23 were unique to DH1 and DLBA, respectively. The comparison of NGS and qPCR results allowed identification of two conserved and five novel miRNA involved in carrot response to salt stress, and which differentiated the salt-tolerant and salt-sensitive varieties. Degradome analysis supported by in silico-based predictions and followed by expression analysis of exemplary target genes pointed at genes related to proline, glutathione, and glutamate metabolism pathways as potential miRNA targets involved in salt tolerance, and indicated that the regulation of osmoprotection and antioxidant protection, earlier identified as being more efficient in the tolerant variety, may be controlled by miRNAs. Furthermore, potential miRNA target genes involved in chloroplast protection, signal transduction and the synthesis and modification of cell wall components were indicated in plants growing in saline soil.


Assuntos
Daucus carota , MicroRNAs , Estresse Fisiológico/genética , Daucus carota/genética , Daucus carota/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Tolerância ao Sal/genética , Solo , Regulação da Expressão Gênica de Plantas , Salinidade
8.
Sci Rep ; 12(1): 7266, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508557

RESUMO

Soil salinization is a growing problem for agriculture worldwide and carrot is one the most salt-sensitive vegetable species. However, some varieties are capable of withstanding high salt concentrations due to unknown genetic and physiological mechanisms. The aim of this work was to reveal protecting mechanisms against osmotic and ionic stresses that contribute to salt tolerance in carrot. For this purpose, changes in biochemical traits due to soil salinity occurring in the salt-tolerant and salt-sensitive plants were determined. The obtained results showed that the tolerance of the salt-tolerant variety was partially determined constitutively, however, the exposition to saline soil triggered a physiological response that was more evident in the root than in the leaves. The most noticeable changes were the high increase in the content of osmoprotective proline and other low molecular antioxidants such as glutathione and ascorbic acid, and the decrease in the ratio of reduced to oxidized glutathione forms. These changes imply an efficient operation of the ascorbate-glutathione cycle that together with a high activity of antioxidative enzymes such as peroxidases, indicate on the induction of mechanisms associated mainly with protection against excessive reactive oxygen species.


Assuntos
Daucus carota , Salinidade , Antioxidantes , Daucus carota/genética , Glutationa , Solo/química
9.
Sci Rep ; 10(1): 18811, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139848

RESUMO

Somatic hybridisation in the carrot, as in other plant species, enables the development of novel plants with unique characteristics. This process can be induced by the application of electric current to isolated protoplasts, but such electrofusion requires an effective hybrid cell identification method. This paper describes the non-toxic fluorescent protein (FP) tagging of protoplasts which allows discrimination of fusion components and identification of hybrids in real-time during electrofusion. One of four FPs: cyan (eCFP), green (sGFP), yellow (eYFP) or the mCherry variant of red FP (RFP), with a fused mitochondrial targeting sequence, was introduced to carrot cell lines of three varieties using Agrobacterium-mediated transformation. After selection, a set of carrot callus lines with either GFP, YFP or RFP-labelled mitochondria that showed stable fluorescence served as protoplast sources. Various combinations of direct current (DC) parameters on protoplast integrity and their ability to form hybrid cells were assessed during electrofusion. The protoplast response and hybrid cell formation depended on DC voltage and pulse time, and varied among protoplast sources. Heterofusants (GFP + RFP or YFP + RFP) were identified by detection of a dual-colour fluorescence. This approach enabled, for the first time, a comprehensive assessment of the carrot protoplast response to the applied electric field conditions as well as identification of the DC parameters suitable for hybrid formation, and an estimation of the electrofusion success rate by performing real-time observations of protoplast fluorescence.


Assuntos
Fusão Celular/métodos , Separação Celular/métodos , Daucus carota/citologia , Eletricidade , Células Híbridas , Hibridização Genética , Mitocôndrias , Protoplastos , Agrobacterium , Linhagem Celular , Proteínas de Fluorescência Verde , Proteínas Luminescentes , Proteína Vermelha Fluorescente
10.
Methods Mol Biol ; 1917: 203-215, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30610638

RESUMO

The development of the Clustered Regularly Interspersed Short Palindromic Repeats (CRISPR)/CRISPR-associated (Cas9) system has advanced genome editing and has become widely adopted for this purpose in many species. Its efficient use requires the method adjustment and optimization. Here, we show the use of a model carrot callus system for demonstrating gene editing via CRISPR/Cas9 targeted mutagenesis. The system relies on the utilization of carrot tissue accumulating anthocyanin pigments responsible for a deep purple cell color and generation of knockout mutations in the flavanone-3-hydroxylase (F3H) gene in the anthocyanin biosynthesis pathway. F3H mutant cells targeted by Cas9/gRNA complexes are not able to synthesize anthocyanins and remain white, easily visually distinguished from purple wild-type cells. Mutations are either small indels or larger chromosomal deletions that can be identified by restriction fragment analysis and sequencing. This feasible system can also be applied for validating efficiency of CRISPR/Cas9 vectors.


Assuntos
Sistemas CRISPR-Cas/genética , Daucus carota/genética , Edição de Genes/métodos , Antocianinas/metabolismo , Calo Ósseo/metabolismo , RNA Guia de Cinetoplastídeos/genética
11.
Plant Physiol Biochem ; 144: 35-48, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31557638

RESUMO

The uptake process and physiological reaction of plants to aromatic iodine compounds have not yet been documented. The aim of this research was to compare uptake by tomato plants of KI and KIO3, as well as of organic iodine compounds - 5-ISA (5-iodosalicylic acid), 3,5-diISA (3,5-diiodosalicylic acid), 2-IBeA (2-iodobenzoic acid), 4-IBeA (4-iodobenzoic acid) and 2,3,5-triIBeA (2,3,5-triiodobenzoic acid). Only 2,3,5-triIBeA had a negative influence on plant development. All organic iodine compounds were taken up by roots and transported to leaves and fruits. Among all the compounds applied, the most efficiently transferred iodine was 2-IBeA - to fruits, and 4-IBeA - to leaves. The order of iodine accumulation in fruit cell compartments was as follows: organelles > cell walls > soluble portions of cells; for leaf and root cells, it was: organelles > cell walls or soluble portions, depending on the compound applied. The compounds studied influence iodine metabolism through expression of the HMT gene which encodes halide ion methyltransferase in leaves and roots. Also, their influence on modification of the activity of the SAMT and S3H genes that encode salicylic acid carboxyl methyltransferase and salicylic acid 3-hydroxylase was established. It was discovered that exogenously applied 5-ISA, 3,5-diISA, 2-IBeA and 4-IBeA are genuinely (endogenously) synthesised in tomato plants; to date, this has not been described for the tomato, nor for any other species of higher plant.


Assuntos
Iodo/metabolismo , Solanum lycopersicum/metabolismo , Biofortificação , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo
13.
Braz. J. Pharm. Sci. (Online) ; 56: e18327, 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1132053

RESUMO

Hypericum sinaicum L. is an endangered Egyptian medicinal plant of high importance due to the presence of naphthodianthrones (hypericins), which have photodynamic properties and pharmaceutical potential. We sought to assess H. sinaicum ability to develop hairy roots that could be cultured in contained conditions in vitro and used as a source for hypericin production. We used four A. rhizogenes strains differing in their plasmids and chromosomal backgrounds to inoculate excised H. sinaicum root, stem and leaf explants to induce hairy root development. Additionally, inoculum was applied to shoots held in Rockwool cubes supporting their stand after removal of the root system. All explant types were susceptible to A. rhizogenes although stem explants responded more frequently (over 90%) than other explant types. The A4 and A4T A. rhizogenes strains were highly, and equally effective in hairy root induction on 66-72% of explants while the LBA1334 strain was the most effective in transformation of shoots. Sonication applied to explants during inoculation enhanced the frequency of hairy root development, the most effective was 60 s treatment doubling the percentage of explants with hairy roots. However, shoot transformation was the most effective approach as shoots developed hairy roots within 10 days after inoculation. Molecular analyses confirmed that the established hairy root cultures in vitro were indeed obtained due to a horizontal gene transfer from bacteria. These cultures grew fast and the hypericin content in hairy roots was about two fold higher than in H. sinaicum plants as determined by HPLC.


Assuntos
Plantas Medicinais/classificação , Raízes de Plantas/efeitos adversos , Hypericum/efeitos adversos , Agrobacterium/metabolismo , Plasmídeos , Técnicas In Vitro/instrumentação , Preparações Farmacêuticas/análise , Cromatografia Líquida de Alta Pressão/métodos , Microscopia Eletrônica de Transmissão e Varredura/métodos
14.
Acta Biochim Pol ; 61(1): 13-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24660169

RESUMO

Hairy root cultures obtained after Agrobacterium rhizogenes-mediated genetic transformation can serve as a model system for studying plant metabolism and physiology, or can be utilized for the production of secondary metabolites. So far no efficient protocol of hairy root development in sugar beet has been publically released. In this work, two A. rhizogenes strains (A4T and LBA1334) carrying a binary vector pBIN-m-gfp5-ER or pCAMBIA1301 possessing gfp and uidA reporter genes were used to transform petiole explants of haploid and diploid sugar beet genotypes. Five treatment combinations of sonicated-assisted Agrobacterium-mediated transformation were compared. Hairy roots appeared on 0% to 54% of explants depending on the treatment combination used. The highest frequency was achieved when explants of a diploid genotype were sonicated for 15 s in the inoculum containing A. rhizogenes of OD600=0.5 and then co-cultured for three days. Using the same treatment combinations the explants of haploid genotypes developed hairy roots with the frequency ranging from 10% to 36%. Transformation efficiency was independent on the bacterial strain used. The results indicate that haploid sugar beet explants are amenable to transformation using A. rhizogenes, and that the efficiency of that process can be increased by applying short ultrasound treatment.


Assuntos
Agrobacterium/genética , Beta vulgaris/citologia , Plantas Geneticamente Modificadas/metabolismo , Beta vulgaris/crescimento & desenvolvimento , Beta vulgaris/metabolismo , Carboidratos/genética , Diploide , Proteínas de Fluorescência Verde , Haploidia , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Sonicação , Transformação Genética
15.
Electron. j. biotechnol ; 16(2): 1-1, Mar. 2013. ilus, tab
Artigo em Inglês | LILACS | ID: lil-670129

RESUMO

Background: Haploid plant material is considered as recalcitrant to organogenesis, propagation, and maintenance in vitro. However, sugar beet (Beta vulgaris L.) breeders utilizing doubled haploid (DH) technology in their breeding programs indicate that sugar beet haploids may be cultured in vitro as well as diploids. Thus in this paper the in vitro performance of haploid and the doubled haploid sugar beet of various origin was evaluated. The DHs were derived from haploids by diploidization and twelve such haploid and corresponding DH clone pairs were obtained thus the comparison included haploid and DH clones that had identical allelic composition and differed only in their ploidy level. Results: The genotypes differed in shoot morphology and susceptibility to blackening during culture in vitro, but no significant differences were observed between the haploids and DHs. The micropropagation rate was, on average, higher for the haploids than DHs. Viability of the midrib and petiole explants after a 6-week culture was highly genotype dependent, but not affected by explant ploidy level. However, regeneration efficiency depended on both the genotype and ploidy level. The explants of several haploids regenerated more frequently and developed more adventitious shoots than the corresponding DHs thus overall efficiency was higher for haploids. Conclusions: The results obtained indicate that most of the haploids used in the comparison performed similar to or even better than DHs. This suggests that sugar beet haploid material can be successfully used not only for the production of DHs, but also maintained in vitro and utilized in projects requiring haploid tissues as the source material.


Assuntos
Beta vulgaris/crescimento & desenvolvimento , Beta vulgaris/genética , Regeneração , Técnicas In Vitro , Cruzamento , Clonagem Molecular , Organogênese Vegetal , Haploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA