Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plasmid ; 125: 102669, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36572199

RESUMO

A subset of clinical isolates of Clostridioides difficile contains one or more plasmids and these plasmids can harbor virulence and antimicrobial resistance determinants. Despite their potential importance, C. difficile plasmids remain poorly characterized. Here, we provide the complete genome sequence of a human clinical isolate that carries three high-copy number plasmids from three different plasmid families that are therefore compatible. For two of these, we identify a region capable of sustaining plasmid replication in C. difficile that is also compatible with the plasmid pCD630 that is found in many laboratory strains. Together, our data advance our understanding of C. difficile plasmid biology.


Assuntos
Clostridioides difficile , Humanos , Plasmídeos/genética , Clostridioides difficile/genética , Clostridioides/genética , Virulência , Fatores de Virulência/genética , Antibacterianos
2.
Mol Biol Evol ; 37(5): 1376-1386, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31960923

RESUMO

The evolution of a placenta is predicted to be accompanied by rapid evolution of genes involved in processes that regulate mother-offspring interactions during pregnancy, such as placenta formation, embryonic development, and nutrient transfer to offspring. However, these predictions have only been tested in mammalian species, where only a single instance of placenta evolution has occurred. In this light, the genus Poeciliopsis is a particularly interesting model for placenta evolution, because in this genus a placenta has evolved independently from the mammalian placenta. Here, we present and compare genome assemblies of two species of the livebearing fish genus Poeciliopsis (family Poeciliidae) that differ in their reproductive strategy: Poeciliopsis retropinna which has a well-developed complex placenta and P. turrubarensis which lacks a placenta. We applied different assembly strategies for each species: PacBio sequencing for P. retropinna (622-Mb assembly, scaffold N50 of 21.6 Mb) and 10× Genomics Chromium technology for P. turrubarensis (597-Mb assembly, scaffold N50 of 4.2 Mb). Using the high contiguity of these genome assemblies and near-completeness of gene annotations to our advantage, we searched for gene duplications and performed a genome-wide scan for genes evolving under positive selection. We find rapid evolution in major parts of several molecular pathways involved in parent-offspring interaction in P. retropinna, both in the form of gene duplications as well as positive selection. We conclude that the evolution of the placenta in the genus Poeciliopsis is accompanied by rapid evolution of genes involved in similar genomic pathways as found in mammals.


Assuntos
Ciprinodontiformes/genética , Genoma , Características de História de Vida , Seleção Genética , Viviparidade não Mamífera/genética , Animais , Feminino , Duplicação Gênica , Masculino , Placenta , Gravidez
3.
Hum Mol Genet ; 28(7): 1064-1075, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30445587

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is characterized by sporadic de-repression of the transcription factor DUX4 in skeletal muscle. DUX4 activates a cascade of muscle disrupting events, eventually leading to muscle atrophy and apoptosis. Yet, how sporadic DUX4 expression leads to the generalized muscle wasting remains unclear. Transcriptome analyses have systematically been challenged by the majority of nuclei being DUX4neg, weakening the DUX4 transcriptome signature. Moreover, DUX4 has been shown to be expressed in a highly dynamic burst-like manner, likely resulting in the detection of the downstream cascade of events long after DUX4 expression itself has faded. Identifying the FSHD transcriptome in individual cells and unraveling the cascade of events leading to FSHD development may therefore provide important insights in the disease process. We employed single-cell RNA sequencing, combined with pseudotime trajectory modeling, to study FSHD disease etiology and cellular progression in human primary myocytes. We identified a small FSHD-specific cell population in all tested patient-derived cultures and detected new genes associated with DUX4 de-repression. We furthermore generated an FSHD cellular progression model, reflecting both the early burst-like DUX4 expression as well as the downstream activation of various FSHD-associated pathways, which allowed us to correlate DUX4 expression signature dynamics with that of regulatory complexes, thereby facilitating the prioritization of epigenetic targets for DUX4 silencing. Single-cell transcriptomics combined with pseudotime modeling thus holds valuable information on FSHD disease etiology and progression that can potentially guide biomarker and target selection for therapy.


Assuntos
Distrofia Muscular Facioescapuloumeral/etiologia , Distrofia Muscular Facioescapuloumeral/genética , Adulto , Sequência de Bases , Núcleo Celular/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Humanos , Masculino , Células Musculares , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Cultura Primária de Células , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
4.
Development ; 143(17): 3074-84, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27471257

RESUMO

Sall4 is an essential transcription factor for early mammalian development and is frequently overexpressed in cancer. Although it is reported to play an important role in embryonic stem cell (ESC) self-renewal, whether it is an essential pluripotency factor has been disputed. Here, we show that Sall4 is dispensable for mouse ESC pluripotency. Sall4 is an enhancer-binding protein that prevents precocious activation of the neural gene expression programme in ESCs but is not required for maintenance of the pluripotency gene regulatory network. Although a proportion of Sall4 protein physically associates with the Nucleosome Remodelling and Deacetylase (NuRD) complex, Sall4 neither recruits NuRD to chromatin nor influences transcription via NuRD; rather, free Sall4 protein regulates transcription independently of NuRD. We propose a model whereby enhancer binding by Sall4 and other pluripotency-associated transcription factors is responsible for maintaining the balance between transcriptional programmes in pluripotent cells.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Imunoprecipitação da Cromatina , Biologia Computacional , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Espectrometria de Massas , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Camundongos , Nucleossomos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética
5.
J Biol Chem ; 289(32): 21844-55, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-24920672

RESUMO

The nucleosome remodeling and deacetylase (NuRD) complex is a widely conserved transcriptional co-regulator that harbors both nucleosome remodeling and histone deacetylase activities. It plays a critical role in the early stages of ES cell differentiation and the reprogramming of somatic to induced pluripotent stem cells. Abnormalities in several NuRD proteins are associated with cancer and aging. We have investigated the architecture of NuRD by determining the structure of a subcomplex comprising RbAp48 and MTA1. Surprisingly, RbAp48 recognizes MTA1 using the same site that it uses to bind histone H4, showing that assembly into NuRD modulates RbAp46/48 interactions with histones. Taken together with other results, our data show that the MTA proteins act as scaffolds for NuRD complex assembly. We further show that the RbAp48-MTA1 interaction is essential for the in vivo integration of RbAp46/48 into the NuRD complex.


Assuntos
Histona Desacetilases/química , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/química , Proteínas Repressoras/química , Proteína 4 de Ligação ao Retinoblastoma/química , Sequência de Aminoácidos , Animais , Montagem e Desmontagem da Cromatina , Sequência Conservada , Cristalografia por Raios X , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/metabolismo , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleossomos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteína 4 de Ligação ao Retinoblastoma/genética , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Proteína 7 de Ligação ao Retinoblastoma/química , Proteína 7 de Ligação ao Retinoblastoma/genética , Proteína 7 de Ligação ao Retinoblastoma/metabolismo , Homologia de Sequência de Aminoácidos , Transativadores , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Nat Biomed Eng ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778183

RESUMO

The functions of non-coding regulatory elements (NCREs), which constitute a major fraction of the human genome, have not been systematically studied. Here we report a method involving libraries of paired single-guide RNAs targeting both ends of an NCRE as a screening system for the Cas9-mediated deletion of thousands of NCREs genome-wide to study their functions in distinct biological contexts. By using K562 and 293T cell lines and human embryonic stem cells, we show that NCREs can have redundant functions, and that many ultra-conserved elements have silencer activity and play essential roles in cell growth and in cellular responses to drugs (notably, the ultra-conserved element PAX6_Tarzan may be critical for heart development, as removing it from human embryonic stem cells led to defects in cardiomyocyte differentiation). The high-throughput screen, which is compatible with single-cell sequencing, may allow for the identification of druggable NCREs.

7.
Sci Adv ; 10(6): eadk3384, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335290

RESUMO

Disruption of cell division cycle associated 7 (CDCA7) has been linked to aberrant DNA hypomethylation, but the impact of DNA methylation loss on transcription has not been investigated. Here, we show that CDCA7 is critical for maintaining global DNA methylation levels across multiple tissues in vivo. A pathogenic Cdca7 missense variant leads to the formation of large, aberrantly hypomethylated domains overlapping with the B genomic compartment but without affecting the deposition of H3K9 trimethylation (H3K9me3). CDCA7-associated aberrant DNA hypomethylation translated to localized, tissue-specific transcriptional dysregulation that affected large gene clusters. In the brain, we identify CDCA7 as a transcriptional repressor and epigenetic regulator of clustered protocadherin isoform choice. Increased protocadherin isoform expression frequency is accompanied by DNA methylation loss, gain of H3K4 trimethylation (H3K4me3), and increased binding of the transcriptional regulator CCCTC-binding factor (CTCF). Overall, our in vivo work identifies a key role for CDCA7 in safeguarding tissue-specific expression of gene clusters via the DNA methylation pathway.


Assuntos
Proteínas de Ciclo Celular , Proteínas Nucleares , DNA , Metilação de DNA , Isoformas de Proteínas/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Animais , Camundongos , Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/metabolismo
8.
J Clin Invest ; 134(7)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38290093

RESUMO

The measles, mumps, and rubella (MMR) vaccine protects against all-cause mortality in children, but the immunological mechanisms mediating these effects are poorly known. We systematically investigated whether MMR can induce long-term functional changes in innate immune cells, a process termed trained immunity, that could at least partially mediate this heterologous protection. In a randomized, placebo-controlled trial, 39 healthy adults received either the MMR vaccine or a placebo. Using single-cell RNA-Seq, we found that MMR caused transcriptomic changes in CD14+ monocytes and NK cells, but most profoundly in γδ T cells. Monocyte function was not altered by MMR vaccination. In contrast, the function of γδ T cells was markedly enhanced by MMR vaccination, with higher production of TNF and IFN-γ, as well as upregulation of cellular metabolic pathways. In conclusion, we describe a trained immunity program characterized by modulation of γδ T cell function induced by MMR vaccination.


Assuntos
Caxumba , Rubéola (Sarampo Alemão) , Criança , Adulto , Humanos , Lactente , Caxumba/prevenção & controle , Vacina contra Sarampo-Caxumba-Rubéola , Rubéola (Sarampo Alemão)/prevenção & controle , Reprogramação Metabólica , Imunidade Treinada , Vacinação , Anticorpos Antivirais
9.
iScience ; 26(3): 106252, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36936794

RESUMO

The pig IPEC-J2 and chicken SL-29 cell lines are of interest because of their untransformed nature and wide use in functional studies. Molecular characterization of these cell lines is important to gain insight into possible molecular aberrations. The aim of this paper is to provide a molecular and epigenetic characterization of the IPEC-J2 and SL-29 cell lines, a cell-line reference for the FAANG community, and future biomedical research. Whole genome sequencing, gene expression, DNA methylation, chromatin accessibility, and ChIP-seq of four histone marks (H3K4me1, H3K4me3, H3K27ac, H3K27me3) and an insulator (CTCF) are used to achieve these aims. Heteroploidy (aneuploidy) of various chromosomes was observed from whole genome sequencing analysis in both cell lines. Furthermore, higher gene expression for genes located on chromosomes with aneuploidy in comparison to diploid chromosomes was observed. Regulatory complexity of gene expression, DNA methylation, and chromatin accessibility was investigated through an integrative approach.

10.
Front Pharmacol ; 14: 1076574, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937863

RESUMO

Background: Inter-individual differences in drug response based on genetic variations can lead to drug toxicity and treatment inefficacy. A large part of this variability is caused by genetic variants in pharmacogenes. Unfortunately, the Single Nucleotide Variant arrays currently used in clinical pharmacogenomic (PGx) testing are unable to detect all genetic variability in these genes. Long-read sequencing, on the other hand, has been shown to be able to resolve complex (pharmaco) genes. In this study we aimed to assess the value of long-read sequencing for research and clinical PGx focusing on the important and highly polymorphic CYP2C19 gene. Methods and Results: With a capture-based long-read sequencing panel we were able to characterize the entire region and assign variants to their allele of origin (phasing), resulting in the identification of 813 unique variants in 37 samples. To assess the clinical utility of this data we have compared the performance of three different *-allele tools (Aldy, PharmCat and PharmaKU) which are specifically designed to assign haplotypes to pharmacogenes based on all input variants. Conclusion: We conclude that long-read sequencing can improve our ability to characterize the CYP2C19 locus, help to identify novel haplotypes and that *-allele tools are a useful asset in phenotype prediction. Ultimately, this approach could help to better predict an individual's drug response and improve therapy outcomes. However, the added value in clinical PGx might currently be limited.

11.
Clin Microbiol Infect ; 29(4): 538.e1-538.e6, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36509372

RESUMO

OBJECTIVES: We report a patient case of pseudomembranous colitis associated with a monotoxin-producing Clostridioides difficile belonging to the very rarely diagnosed polymerase chain reaction (PCR) ribotype (RT) 151. To understand why this isolate was not identified using a routine commercial test, we performed a genomic analysis of RT151. METHODS: Illumina short-read sequencing was performed on n = 11 RT151s from various geographical regions to study their genomic characteristics and relatedness. Subsequently, we used PacBio circular consensus sequencing to determine the complete genome sequence of isolates belonging to cryptic clades C-I and C-II, which includes the patient isolate. RESULTS: We found that 1) RT151s are polyphyletic with isolates falling into clades 1 and cryptic clades C-I and C-II; 2) RT151 contains both nontoxigenic and toxigenic isolates and 3) RT151 C-II isolates contained monotoxin pathogenicity loci. The isolate from our patient case report contains a novel-pathogenicity loci insertion site, lacked tcdA and had a divergent tcdB sequence that might explain the failure of the diagnostic test. DISCUSSION: This study shows that RT151 encompasses both typical and cryptic clades and provides conclusive evidence for C. difficile infection due to clade C-II isolates that was hitherto lacking. Vigilance towards C. difficile infection as a result of cryptic clade isolates is warranted.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Humanos , Toxinas Bacterianas/genética , Ribotipagem , Infecções por Clostridium/diagnóstico , Reação em Cadeia da Polimerase , Genômica
12.
J Exp Med ; 220(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37428185

RESUMO

Innate mononuclear phagocytic system (MPS) cells preserve mucosal immune homeostasis. We investigated their role at nasal mucosa following allergen challenge with house dust mite. We combined single-cell proteome and transcriptome profiling on nasal immune cells from nasal biopsies cells from 30 allergic rhinitis and 27 non-allergic subjects before and after repeated nasal allergen challenge. Biopsies of patients showed infiltrating inflammatory HLA-DRhi/CD14+ and CD16+ monocytes and proallergic transcriptional changes in resident CD1C+/CD1A+ conventional dendritic cells (cDC)2 following challenge. In contrast, non-allergic individuals displayed distinct innate MPS responses to allergen challenge: predominant infiltration of myeloid-derived suppressor cells (MDSC: HLA-DRlow/CD14+ monocytes) and cDC2 expressing inhibitory/tolerogenic transcripts. These divergent patterns were confirmed in ex vivo stimulated MPS nasal biopsy cells. Thus, we identified not only MPS cell clusters involved in airway allergic inflammation but also highlight novel roles for non-inflammatory innate MPS responses by MDSC to allergens in non-allergic individuals. Future therapies should address MDSC activity as treatment for inflammatory airway diseases.


Assuntos
Alérgenos , Rinite Alérgica Perene , Humanos , Rinite Alérgica Perene/patologia , Mucosa Nasal , Células Mieloides/patologia , Inflamação/patologia
13.
Nat Plants ; 8(5): 526-534, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35534719

RESUMO

Agrobacterium tumefaciens, a pathogenic bacterium capable of transforming plants through horizontal gene transfer, is nowadays the preferred vector for plant genetic engineering. The vehicle for transfer is the T-strand, a single-stranded DNA molecule bound by the bacterial protein VirD2, which guides the T-DNA into the plant's nucleus where it integrates. How VirD2 is removed from T-DNA, and which mechanism acts to attach the liberated end to the plant genome is currently unknown. Here, using newly developed technology that yields hundreds of T-DNA integrations in somatic tissue of Arabidopsis thaliana, we uncover two redundant mechanisms for the genomic capture of the T-DNA 5' end. Different from capture of the 3' end of the T-DNA, which is the exclusive action of polymerase theta-mediated end joining (TMEJ), 5' attachment is accomplished either by TMEJ or by canonical non-homologous end joining (cNHEJ). We further find that TMEJ needs MRE11, whereas cNHEJ requires TDP2 to remove the 5' end-blocking protein VirD2. As a consequence, T-DNA integration is severely impaired in plants deficient for both MRE11 and TDP2 (or other cNHEJ factors). In support of MRE11 and cNHEJ specifically acting on the 5' end, we demonstrate rescue of the integration defect of double-deficient plants by using T-DNAs that are capable of forming telomeres upon 3' capture. Our study provides a mechanistic model for how Agrobacterium exploits the plant's own DNA repair machineries to transform it.


Assuntos
Agrobacterium tumefaciens , Arabidopsis , Agrobacterium tumefaciens/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Reparo do DNA por Junção de Extremidades , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Genômica , Plantas/genética
14.
Cell Rep Methods ; 2(10): 100300, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36313798

RESUMO

Inserting large DNA payloads (>10 kb) into specific genomic sites of mammalian cells remains challenging. Applications ranging from synthetic biology to evaluating the pathogenicity of disease-associated variants for precision medicine initiatives would greatly benefit from tools that facilitate this process. Here, we merge the strengths of different classes of site-specific recombinases and combine these with CRISPR-Cas9-mediated homologous recombination to develop a strategy for stringent site-specific replacement of genomic fragments at least 50 kb in size in human induced pluripotent stem cells (hiPSCs). We demonstrate the versatility of STRAIGHT-IN (serine and tyrosine recombinase-assisted integration of genes for high-throughput investigation) by (1) inserting various combinations of fluorescent reporters into hiPSCs to assess the excitation-contraction coupling cascade in derivative cardiomyocytes and (2) simultaneously targeting multiple variants associated with inherited cardiac arrhythmic disorders into a pool of hiPSCs. STRAIGHT-IN offers a precise approach to generate genetically matched panels of hiPSC lines efficiently and cost effectively.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , DNA , Recombinação Homóloga
15.
Nat Genet ; 53(8): 1207-1220, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34267371

RESUMO

In mammalian embryos, proper zygotic genome activation (ZGA) underlies totipotent development. Double homeobox (DUX)-family factors participate in ZGA, and mouse Dux is required for forming cultured two-cell (2C)-like cells. Remarkably, in mouse embryonic stem cells, Dux is activated by the tumor suppressor p53, and Dux expression promotes differentiation into expanded-fate cell types. Long-read sequencing and assembly of the mouse Dux locus reveals its complex chromatin regulation including putative positive and negative feedback loops. We show that the p53-DUX/DUX4 regulatory axis is conserved in humans. Furthermore, we demonstrate that cells derived from patients with facioscapulohumeral muscular dystrophy (FSHD) activate human DUX4 during p53 signaling via a p53-binding site in a primate-specific subtelomeric long terminal repeat (LTR)10C element. In summary, our work shows that p53 activation convergently evolved to couple p53 to Dux/DUX4 activation in embryonic stem cells, embryos and cells from patients with FSHD, potentially uniting the developmental and disease regulation of DUX-family factors and identifying evidence-based therapeutic opportunities for FSHD.


Assuntos
Proteínas de Homeodomínio/genética , Células-Tronco Embrionárias Murinas/fisiologia , Distrofia Muscular Facioescapuloumeral/patologia , Proteína Supressora de Tumor p53/genética , Animais , Diferenciação Celular/genética , Reprogramação Celular , Dano ao DNA , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Camundongos Knockout , Células-Tronco Embrionárias Murinas/citologia , Distrofia Muscular Facioescapuloumeral/genética , Proteínas Nucleares/genética , Células-Tronco Pluripotentes/fisiologia , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/metabolismo , Zigoto/citologia
16.
BMC Genet ; 11: 106, 2010 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-21118569

RESUMO

BACKGROUND: Forward genetic screens in mice provide an unbiased means to identify genes and other functional genetic elements in the genome. Previously, a large scale ENU mutagenesis screen was conducted to query the functional content of a ~50 Mb region of the mouse genome on proximal Chr 5. The majority of phenotypic mutants recovered were embryonic lethals. RESULTS: We report the high resolution genetic mapping, complementation analyses, and positional cloning of mutations in the target region. The collection of identified alleles include several with known or presumed functions for which no mutant models have been reported (Tbc1d14, Nol14, Tyms, Cad, Fbxl5, Haus3), and mutations in genes we or others previously reported (Tapt1, Rest, Ugdh, Paxip1, Hmx1, Otoe, Nsun7). We also confirmed the causative nature of a homeotic mutation with a targeted allele, mapped a lethal mutation to a large gene desert, and localized a spermiogenesis mutation to a region in which no annotated genes have coding mutations. The mutation in Tbc1d14 provides the first implication of a critical developmental role for RAB-GAP-mediated protein transport in early embryogenesis. CONCLUSION: This collection of alleles contributes to the goal of assigning biological functions to all known genes, as well as identifying novel functional elements that would be missed by reverse genetic approaches.


Assuntos
Mapeamento Cromossômico , Cromossomos/efeitos dos fármacos , Análise Mutacional de DNA , Desenvolvimento Embrionário/genética , Camundongos/genética , Mutação , Animais , Clonagem Molecular , Etilnitrosoureia/toxicidade , Genes Letais , Teste de Complementação Genética , Masculino , Camundongos Endogâmicos C57BL , Deleção de Sequência , Espermatogênese/genética
17.
Stem Cell Res ; 46: 101867, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32535494

RESUMO

Differentiation of mammalian pluripotent cells involves large-scale changes in transcription and, among the molecules that orchestrate these changes, chromatin remodellers are essential to initiate, establish and maintain a new gene regulatory network. The Nucleosome Remodelling and Deacetylation (NuRD) complex is a highly conserved chromatin remodeller which fine-tunes gene expression in embryonic stem cells. While the function of NuRD in mouse pluripotent cells has been well defined, no study yet has defined NuRD function in human pluripotent cells. Here we find that while NuRD activity is required for lineage commitment from primed pluripotency in both human and mouse cells, the nature of this requirement is surprisingly different. While mouse embryonic stem cells (mESC) and epiblast stem cells (mEpiSC) require NuRD to maintain an appropriate differentiation trajectory as judged by gene expression profiling, human induced pluripotent stem cells (hiPSC) lacking NuRD fail to even initiate these trajectories. Further, while NuRD activity is dispensable for self-renewal of mESCs and mEpiSCs, hiPSCs require NuRD to maintain a stable self-renewing state. These studies reveal that failure to properly fine-tune gene expression and/or to reduce transcriptional noise through the action of a highly conserved chromatin remodeller can have different consequences in human and mouse pluripotent stem cells.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Animais , Diferenciação Celular , Proteínas de Ligação a DNA/genética , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Camundongos , Nucleossomos
18.
Cell Stem Cell ; 24(1): 123-137.e8, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30472157

RESUMO

The pluripotent ground state is defined as a basal state free of epigenetic restrictions, which influence lineage specification. While naive embryonic stem cells (ESCs) can be maintained in a hypomethylated state with open chromatin when grown using two small-molecule inhibitors (2i)/leukemia inhibitory factor (LIF), in contrast to serum/LIF-grown ESCs that resemble early post-implantation embryos, broader features of the ground-state pluripotent epigenome are not well understood. We identified epigenetic features of mouse ESCs cultured using 2i/LIF or serum/LIF by proteomic profiling of chromatin-associated complexes and histone modifications. Polycomb-repressive complex 2 (PRC2) and its product H3K27me3 are highly abundant in 2i/LIF ESCs, and H3K27me3 is distributed genome-wide in a CpG-dependent fashion. Consistently, PRC2-deficient ESCs showed increased DNA methylation at sites normally occupied by H3K27me3 and increased H4 acetylation. Inhibiting DNA methylation in PRC2-deficient ESCs did not affect their viability or transcriptome. Our findings suggest a unique H3K27me3 configuration protects naive ESCs from lineage priming, and they reveal widespread epigenetic crosstalk in ground-state pluripotency.


Assuntos
Cromatina/metabolismo , Metilação de DNA , Epigênese Genética , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Pluripotentes/citologia , Complexo Repressor Polycomb 2/metabolismo , Proteoma/análise , Animais , Diferenciação Celular , Cromatina/genética , Histonas/genética , Histonas/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Complexo Repressor Polycomb 2/genética , Processamento de Proteína Pós-Traducional
19.
Nat Commun ; 9(1): 4588, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30389936

RESUMO

The nucleosome remodeling and deacetylase (NuRD) complex plays an important role in gene expression regulation, stem cell self-renewal, and lineage commitment. However, little is known about the dynamics of NuRD during cellular differentiation. Here, we study these dynamics using genome-wide profiling and quantitative interaction proteomics in mouse embryonic stem cells (ESCs) and neural progenitor cells (NPCs). We find that the genomic targets of NuRD are highly dynamic during differentiation, with most binding occurring at cell-type specific promoters and enhancers. We identify ZFP296 as an ESC-specific NuRD interactor that also interacts with the SIN3A complex. ChIP-sequencing in Zfp296 knockout (KO) ESCs reveals decreased NuRD binding both genome-wide and at ZFP296 binding sites, although this has little effect on the transcriptome. Nevertheless, Zfp296 KO ESCs exhibit delayed induction of lineage-specific markers upon differentiation to embryoid bodies. In summary, we identify an ESC-specific NuRD-interacting protein which regulates genome-wide NuRD binding and cellular differentiation.


Assuntos
Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Genoma , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas/genética , Ligação Proteica , Transporte Proteico , Proteínas Repressoras/metabolismo , Complexo Correpressor Histona Desacetilase e Sin3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA