Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(13)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206823

RESUMO

Controlling environmental pollution is a burning problem for all countries more than ever. Currently, due to the increasing industrialization, the number of days when the limits of air pollutants are over the threshold levels exceeds 80-85% of the year. Therefore, cheap and effective sensors are always welcome. One idea is to combine such solutions with cars and provide real-time information about the current pollution level. However, the environmental conditions are demanding, and thus the developed sensors need to be characterized by the high 3S parameters: sensitivity, stability and selectivity. In this paper, we present the results on the heterostructure of CuO/SnOx and SnOx/CuO as a possible approach for selective NO2 detection. The developed gas sensors exhibited lower operating temperature and high response in the wide range of NO2 and in a wide range of relative humidity changes. Material characterizations and impedance spectroscopy measurements were also conducted to analyze the chemical and electrical behavior.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Cobre , Temperatura
2.
Materials (Basel) ; 17(17)2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39274596

RESUMO

The study examined the possibility of intercalation of montmorillonite with neomycin in an aqueous drug solution and the factors influencing the effectiveness of this process, such as the ion exchange capacity and process conditions, including the time and temperature of incubation with the drug. X-ray diffractometry (XRD), infrared spectroscopy (FTIR), thermal analysis (DSC/TG), and Zeta potential measurement were used to confirm drug intercalation as well as to investigate the nature of clay-drug interactions. The obtained conjugates with the most favorable physicochemical properties were also tested for antibacterial response against Gram-negative bacteria (Escherichia coli) to confirm that the bactericidal properties of neomycin were retained after intercalation and UV-VIS spectrophotometry was used to examine the kinetics of drug release from the carrier. The results of the conducted research clearly indicate the successful intercalation of neomycin in montmorillonite and indicate the influence of process parameters on the properties of not only the conjugates themselves but also the properties of the intercalated drug, particularly its bactericidal activity. Ultimately, a temperature of 50 °C was found to be optimal for effective drug intercalation and the conjugates obtained within 2 h showed the highest antibacterial activity, indicating the highest potential of the thus-obtained montmorillonite conjugates as neomycin carriers.

3.
J Funct Biomater ; 14(3)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36976091

RESUMO

The aim of the work was to examine the possibility of using modified halloysite nanotubes as a gentamicin carrier and to determine the usefulness of the modification in terms of the effect on the amount of the drug attached, its release time, but also on the biocidal properties of the carriers. In order to fully examine the halloysite in terms of the possibility of gentamicin incorporating, a number of modifications of the native halloysite were carried out prior to gentamicin intercalation with the use of sodium alkali, sulfuric and phosphoric acids, curcumin and the process of delamination of nanotubes (expanded halloysite) with ammonium persulfate in sulfuric acid. Gentamicin was added to unmodified and modified halloysite in an amount corresponding to the cation exchange capacity of pure halloysite from the Polish Dunino deposit, which was the reference sample for all modified carriers. The obtained materials were tested to determine the effect of surface modification and their interaction with the introduced antibiotic on the biological activity of the carrier, kinetics of drug release, as well as on the antibacterial activity against Escherichia coli Gram-negative bacteria (reference strain). For all materials, structural changes were examined using infrared spectroscopy (FTIR) and X-ray diffraction (XRD); thermal differential scanning calorimetry with thermogravimetric analysis (DSC/TG) was performed as well. The samples were also observed for morphological changes after modification and drug activation by transmission electron microscopy (TEM). The conducted tests clearly show that all samples of halloysite intercalated with gentamicin showed high antibacterial activity, with the highest antibacterial activity for the sample modified with sodium hydroxide and intercalated with the drug. It was found that the type of halloysite surface modification has a significant effect on the amount of gentamicin intercalated and then released into the surrounding environment but does not significantly affect its ability to further influence drug release over time. The highest amount of drug released among all intercalated samples was recorded for halloysite modified with ammonium persulfate (real loading efficiency above 11%), for which high antibacterial activity was found after surface modification, before drug intercalation. It is also worth noting that intrinsic antibacterial activity was found for non-drug-intercalated materials after surface functionalization with phosphoric acid (V) and ammonium persulfate in the presence of sulfuric acid (V).

4.
Materials (Basel) ; 15(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35329711

RESUMO

In this paper, we investigated the optical and thermo-optical properties of a-SiNx:H layers obtained using the PECVD technique. SiNx:H layers with different refractive indices were obtained from silane and ammonia as precursor gases. Surface morphology and chemical composition studies were investigated using atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and energy dispersive spectrometry methods. Spectroscopic ellipsometry was used to determine the optical indexes, thicknesses and optical bandgap of the films. The main purpose was to identify the thermo-optical characteristics of layers with different refractive indexes. Thermo-optical studies were performed to determine the temperature hysteresis of optical parameters. These measurements showed that after annealing up to 300 °C and subsequent cooling, the value of optical parameters returned to the initial values.

5.
Materials (Basel) ; 15(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35744140

RESUMO

The results of plasmochemical modification on Crofer 22APU ferritic stainless steel with a SiCxNy:H layer, as well as the impact of these processes on the increase in usability of the steel as intermediate-temperature solid oxide fuel cell (IT-SOFC), interconnects, are presented in this work. The layer was obtained using Radio-Frequency Plasma-Activated Chemical Vapor Deposition (RF PA CVD, 13.56 MHz) with or without the N+ ion modification process of the steel surface. To determine the impact of the surface modification on the steel's resistance to high-temperature corrosion and on its mechanical properties, the chemical composition, atomic structure, and microstructure were investigated by means of IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Microhardness, Young's modulus, wear rate, as well as electrical resistance, were also determined. Micromechanical experiments showed that the plasmochemical modification has a positive influence on the surface hardness and Young's modulus of the investigated samples. High-temperature oxidation studies performed for the samples indicate that N+ ion modification prior to the deposition of the SiCxNy:H layer improves the corrosion resistance of Crofer 22APU steel modified via CVD. The area-specific resistance of the studied samples was 0.01 Ω·cm2, which is lower than that of bare steel after 500 h of oxidation at 1073 K. It was demonstrated that the deposition of the SiCxNy:H layer preceded by N+ ion modification yields the best properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA