RESUMO
As a prototype of genomics-guided precision medicine, individualized thiopurine dosing based on pharmacogenetics is a highly effective way to mitigate hematopoietic toxicity of this class of drugs. Recently, NUDT15 deficiency was identified as a genetic cause of thiopurine toxicity, and NUDT15-informed preemptive dose reduction was quickly adopted in clinical settings. To exhaustively identify pharmacogenetic variants in this gene, we developed massively parallel NUDT15 function assays to determine the variants' effect on protein abundance and thiopurine cytotoxicity. Of the 3,097 possible missense variants, we characterized the abundance of 2,922 variants and found 54 hotspot residues at which variants resulted in complete loss of protein stability. Analyzing 2,935 variants in the thiopurine cytotoxicity-based assay, we identified 17 additional residues where variants altered NUDT15 activity without affecting protein stability. We identified structural elements key to NUDT15 stability and/or catalytical activity with single amino acid resolution. Functional effects for NUDT15 variants accurately predicted toxicity risk alleles in patients treated with thiopurines with far superior sensitivity and specificity compared to bioinformatic prediction algorithms. In conclusion, our massively parallel variant function assays identified 1,152 deleterious NUDT15 variants, providing a comprehensive reference of variant function and vastly improving the ability to implement pharmacogenetics-guided thiopurine treatment individualization.
Assuntos
Antimetabólitos/administração & dosagem , Antimetabólitos/toxicidade , Mercaptopurina/administração & dosagem , Mercaptopurina/toxicidade , Variantes Farmacogenômicos , Pirofosfatases/genética , Alelos , Substituição de Aminoácidos , Relação Dose-Resposta a Droga , Determinação de Ponto Final , Estabilidade Enzimática , Células HEK293 , Humanos , Mutação de Sentido Incorreto , Medicina de Precisão , Conformação Proteica em alfa-Hélice/genética , Pirofosfatases/química , RiscoRESUMO
PURPOSE: The global pediatric oncology clinical research landscape, particularly in Central and South America, Africa, and Asia, which bear the highest burden of global childhood cancer cases, is less characterized in the literature. Review of how existing pediatric cancer clinical trial groups internationally have been formed and how their research goals have been pursued is critical for building global collaborative research and data-sharing efforts, in line with the WHO Global Initiative for Childhood Cancer. METHODS: A narrative literature review of collaborative groups performing pediatric cancer clinical research in each continent was conducted. An inventory of research groups was assembled and reviewed by current pediatric cancer regional and continental leaders. Each group was narratively described with identification of common structural and research themes among consortia. RESULTS: There is wide variability in the structure, history, and goals of pediatric cancer clinical trial collaborative groups internationally. Several continental regions have longstanding endogenously-formed clinical trial groups that have developed and published numerous adapted treatment regimens to improve outcomes, whereas other regions have consortia focused on developing foundational database registry infrastructure supported by large multinational organizations or twinning relationships. CONCLUSION: There cannot be a one-size-fits-all approach to increasing collaboration between international pediatric cancer clinical trial groups, as this requires a nuanced understanding of local stakeholders and resources necessary to form partnerships. Needs assessments, performed either by local consortia or in conjunction with international partners, have generated productive clinical trial infrastructure. To achieve the goals of the Global Initiative for Childhood Cancer, global partnerships must be sufficiently granular to account for the distinct needs of each collaborating group and should incorporate grassroots approaches, robust twinning relationships, and implementation science.
Assuntos
Oncologia , Neoplasias , África , Criança , Bases de Dados Factuais , Humanos , Disseminação de Informação , Neoplasias/terapiaRESUMO
Widely used as anticancer and immunosuppressive agents, thiopurines have narrow therapeutic indices owing to frequent toxicities, partly explained by TPMT genetic polymorphisms. Recent studies identified germline NUDT15 variation as another critical determinant of thiopurine intolerance, but the underlying molecular mechanisms and the clinical implications of this pharmacogenetic association remain unknown. In 270 children enrolled in clinical trials for acute lymphoblastic leukemia in Guatemala, Singapore and Japan, we identified four NUDT15 coding variants (p.Arg139Cys, p.Arg139His, p.Val18Ile and p.Val18_Val19insGlyVal) that resulted in 74.4-100% loss of nucleotide diphosphatase activity. Loss-of-function NUDT15 diplotypes were consistently associated with thiopurine intolerance across the three cohorts (P = 0.021, 2.1 × 10(-5) and 0.0054, respectively; meta-analysis P = 4.45 × 10(-8), allelic effect size = -11.5). Mechanistically, NUDT15 inactivated thiopurine metabolites and decreased thiopurine cytotoxicity in vitro, and patients with defective NUDT15 alleles showed excessive levels of thiopurine active metabolites and toxicity. Taken together, these results indicate that a comprehensive pharmacogenetic model integrating NUDT15 variants may inform personalized thiopurine therapy.
Assuntos
Antimetabólitos Antineoplásicos/efeitos adversos , Mercaptopurina/efeitos adversos , Pirofosfatases/genética , Antimetabólitos Antineoplásicos/uso terapêutico , Estudos de Associação Genética , Hematopoese/efeitos dos fármacos , Humanos , Mercaptopurina/uso terapêutico , Polimorfismo de Nucleotídeo Único , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Pirofosfatases/metabolismoRESUMO
Recent genomic profiling of childhood acute lymphoblastic leukemia (ALL) identified a high-risk subtype with an expression signature resembling that of Philadelphia chromosome-positive ALL and poor prognosis (Ph-like ALL). However, the role of inherited genetic variation in Ph-like ALL pathogenesis remains unknown. In a genome-wide association study (GWAS) of 511 ALL cases and 6,661 non-ALL controls, we identified a susceptibility locus for Ph-like ALL (GATA3, rs3824662; P = 2.17 × 10(-14), odds ratio (OR) = 3.85 for Ph-like ALL versus non-ALL; P = 1.05 × 10(-8), OR = 3.25 for Ph-like ALL versus non-Ph-like ALL), with independent validation. The rs3824662 risk allele was associated with somatic lesions underlying Ph-like ALL (CRLF2 rearrangement, JAK gene mutation and IKZF1 deletion) and with variation in GATA3 expression. Finally, genotype at the GATA3 SNP was also associated with early treatment response and risk of ALL relapse. Our results provide insights into interactions between inherited and somatic variants and their role in ALL pathogenesis and prognosis.
Assuntos
Fator de Transcrição GATA3/genética , Predisposição Genética para Doença , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Estudos de Casos e Controles , Criança , Frequência do Gene , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Padrões de Herança , Polimorfismo de Nucleotídeo Único , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Recidiva , RiscoRESUMO
PURPOSE: To analyze the genetic and epigenetic alterations affecting the RB1, TP53, p16INK4, and p21WAF1 tumor suppressor genes, loss of heterozygosity (LOH) at 3q and 18q, and the clinical variables of a series of Spanish children with osteosarcoma. These genetic changes were tested for an association with prognosis. METHODS: Peripheral blood samples and clinical data were available from 76 patients with osteosarcoma. Paired tissue was available from 41 of them. The mutation and methylation status of p16INK4, p21WAF1, TP53, and RB1 was screened as well as LOH at 3q and 18q. RESULTS: Loss of heterozygosity affecting RB1 (37.2%), TP53 (42.3%), and 18q (30.8%) and TP53 mutation (39%) were frequently encountered. TP53 mutation was associated with diagnosis at a later age. RB1 alteration was associated with reduced survival and event-free survival. The clinical variables associated with poor prognosis were the presence of metastasis at diagnosis (P = 0.035) or during treatment (P = 0.016) and the chondroblastic histologic subtype (P = 0.007); the response to induction chemotherapy (<90% necrosis) also tended to be related to poor prognosis (P = 0.08). CONCLUSIONS: RB1, TP53, and possibly other tumor suppressor genes located at 18q and other localizations are involved in pediatric osteosarcoma carcinogenesis, together with other genetic alterations not fully understood to date. Based on these results, the presence of an altered RB1 gene should be regarded as a poor prognostic factor for pediatric osteosarcoma.