Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 291(25): 13318-34, 2016 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-27129206

RESUMO

Some complex plant-derived polysaccharides, such as modified citrus pectins and galactomannans, have been shown to have promising anti-inflammatory and anti-cancer effects. Most reports propose or claim that these effects are due to interaction of the polysaccharides with galectins because the polysaccharides contain galactose-containing side chains that might bind this class of lectin. However, their direct binding to and/or inhibition of the evolutionarily conserved galactoside-binding site of galectins has not been demonstrated. Using a well established fluorescence anisotropy assay, we tested the direct interaction of several such polysaccharides with physiological concentrations of a panel of galectins. The bioactive pectic samples tested were very poor inhibitors of the canonical galactoside-binding site for the tested galectins, with IC50 values >10 mg/ml for a few or in most cases no inhibitory activity at all. The galactomannan Davanat® was more active, albeit not a strong inhibitor (IC50 values ranging from 3 to 20 mg/ml depending on the galectin). Pure synthetic oligosaccharide fragments found in the side chains and backbone of pectins and galactomannans were additionally tested. The most commonly found galactan configuration in pectins had no inhibition of the galectins tested. Galactosylated tri- and pentamannosides, representing the structure of Davanat®, had an inhibitory effect of galectins comparable with that of free galactose. Further evaluation using cell-based assays, indirectly linked to galectin-3 inhibition, showed no inhibition of galectin-3 by the polysaccharides. These data suggest that the physiological effects of these plant polysaccharides are not due to inhibition of the canonical galectin carbohydrate-binding site.


Assuntos
Antineoplásicos/química , Galactose/análogos & derivados , Galectinas/química , Pectinas/química , Polissacarídeos/química , Antineoplásicos/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Polarização de Fluorescência , Galactose/química , Galactose/farmacologia , Hemaglutinação , Humanos , Concentração Inibidora 50 , Mananas , Pectinas/farmacologia , Polissacarídeos/farmacologia , Ligação Proteica
2.
Glycobiology ; 26(1): 88-99, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26646771

RESUMO

Galectin-3 (Gal-3) is a multifunctional lectin, unique to galectins by the presence of a long N-terminal tail (NT) off of its carbohydrate recognition domain (CRD). Many previous studies have investigated binding of small carbohydrates to its CRD. Here, we used nuclear magnetic resonance spectroscopy ((15)N-(1)H heteronuclear single quantum coherence data) to assess binding of (15)N-Gal-3 (and truncated (15)N-Gal-3 CRD) to several, relatively large polysaccharides, including eight varieties of galactomannans (GMs), as well as a ß(1 → 4)-polymannan and an α-branched mannan. Overall, we found that these polysaccharides with a larger carbohydrate footprint interact primarily with a noncanonical carbohydrate-binding site on the F-face of the Gal-3 CRD ß-sandwich, and to a less extent, if at all, with the canonical carbohydrate-binding site on the S-face. While there is no evidence for interaction with the NT itself, it does appear that the NT somehow mediates stronger interactions between the Gal-3 CRD and the GMs. Significant Gal-3 resonance broadening observed during polysaccharide titrations indicates that interactions occur in the intermediate exchange regime, and analysis of these data allows estimation of affinities and stoichiometries that range from 4 × 10(4) to 12 × 10(4) M(-1) per site and multiple sites per polysaccharide, respectively. We also found that lactose can still bind to the CRD S-face of GM-bound Gal-3, with the binding of one ligand attenuating affinity of the other. These data are compared with previous results on Gal-1, revealing differences and similarities. They also provide research direction to the development of these polysaccharides as galectin-targeting therapeutics in the clinic.


Assuntos
Galectina 3/química , Mananas/metabolismo , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Sítios de Ligação , Sequência de Carboidratos , Galactose/análogos & derivados , Galectina 3/metabolismo , Glicosilação , Humanos , Mananas/química , Dados de Sequência Molecular , Ligação Proteica
3.
Glycobiology ; 22(4): 543-51, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22156919

RESUMO

Galectins have a highly conserved carbohydrate-binding domain to which a variety of galactose-containing saccharides, both ß- and α-galactosides, can interact with varying degrees of affinity. Recently, we demonstrated that the relatively large α(1 → 6)-D-galacto-ß(1 → 4)-D-mannan (Davanat) binds galectin-1 (gal-1) primarily at an alternative carbohydrate-binding domain. Here, we used a series of α-galactomannans (GMs) that vary in their mannose-to-galactose ratios for insight into an optimal structural signature for GM binding to gal-1. Heteronuclear single-quantum coherence nuclear magnetic resonance spectroscopy with (15)N-labeled gal-1 and statistical modeling suggest that the optimal signature consists of α-D-galactopyranosyl doublets surrounded by regions of about four or more "naked" mannose residues. These relatively large and complex GMs all appear to interact with varying degrees at essentially the same binding surface on gal-1 that includes the Davanat alternative binding site and elements of the canonical ß-galactoside-binding region. The use of two small, well-defined GMs [6(1)-α(1 → 6)-D-galactosyl-ß-D-mannotriaose and 6(3),6(4)-di-α(1 → 6)-D-galactosyl-ß-D-mannopentaose] helped characterize how GMs, in general, interact in part with the canonical site. Overall, our findings contribute to better understanding interactions of gal-1 with larger, complex polysaccharides and to the development of GM-based therapeutics for clinical use.


Assuntos
Galectina 1/química , Mananas/química , Motivos de Aminoácidos , Sítios de Ligação , Configuração de Carboidratos , Desenho de Fármacos , Galactose/análogos & derivados , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Oligossacarídeos/química , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Trissacarídeos/química
4.
Glycobiology ; 21(12): 1627-41, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21712397

RESUMO

By definition, adhesion/growth-regulatory galectins are known for their ability to bind ß-galactosides such as Galß(1 → 4)Glc (lactose). Indications for affinity of human galectin-1 to α-linked digalactosides pose questions on the interaction profile with such bound ligands and selection of the galactose moiety for CH-π stacking. These issues are resolved by a combination of (15)N-(1)H heteronuclear single quantum coherence (HSQC) chemical shift and saturation transfer difference nuclear magnetic resonance (STD NMR) epitope mappings with docking analysis, using the α(1 → 3/4)-linked digalactosides and also Galα(1 → 6)Glc (melibiose) as test compounds. The experimental part revealed interaction with the canonical lectin site, and this preferentially via the non-reducing-end galactose moiety. Low-energy conformers appear to be selected without notable distortion, as shown by molecular dynamics simulations. With the α(1 → 4) disaccharide, however, the typical CH-π interaction is significantly diminished, yet binding appears to be partially compensated for by hydrogen bonding. Overall, these findings reveal that the type of α-linkage in digalactosides has an impact on maintaining CH-π interactions and the pattern of hydrogen bonding, explaining preference for the α(1 → 3) linkage. Thus, this lectin is able to accommodate both α- and ß-linked galactosides at the same site, with major contacts to the non-reducing-end sugar unit.


Assuntos
Galactosídeos/química , Galectina 1/química , Sítios de Ligação , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Simulação de Dinâmica Molecular
5.
Eur J Hum Genet ; 22(9): 1111-6, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24448544

RESUMO

Mendez and colleagues reported the identification of a Y chromosome haplotype (the A00 lineage) that lies at the basal position of the Y chromosome phylogenetic tree. Incorporating this haplotype, the authors estimated the time to the most recent common ancestor (TMRCA) for the Y tree to be 338,000 years ago (95% CI=237,000-581,000). Such an extraordinarily early estimate contradicts all previous estimates in the literature and is over a 100,000 years older than the earliest fossils of anatomically modern humans. This estimate raises two astonishing possibilities, either the novel Y chromosome was inherited after ancestral humans interbred with another species, or anatomically modern Homo sapiens emerged earlier than previously estimated and quickly became subdivided into genetically differentiated subpopulations. We demonstrate that the TMRCA estimate was reached through inadequate statistical and analytical methods, each of which contributed to its inflation. We show that the authors ignored previously inferred Y-specific rates of substitution, incorrectly derived the Y-specific substitution rate from autosomal mutation rates, and compared unequal lengths of the novel Y chromosome with the previously recognized basal lineage. Our analysis indicates that the A00 lineage was derived from all the other lineages 208,300 (95% CI=163,900-260,200) years ago.


Assuntos
Cromossomos Humanos Y/genética , Evolução Molecular , Cromossomos Humanos X/genética , Fósseis , Haplótipos , Humanos , Mutação , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA