Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 21(11): e3002343, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38029342

RESUMO

For social interaction to be successful, two conditions must be met: the motivation to initiate it and the ability to maintain it. This study uses both optogenetic and chemogenetic approaches to reveal the specific neural pathways that selectively influence those two social interaction components.


Assuntos
Optogenética , Interação Social , Cognição , Motivação , Neurônios/fisiologia , Vias Neurais/fisiologia
2.
Proc Natl Acad Sci U S A ; 120(46): e2302655120, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37934822

RESUMO

Reading danger signals may save an animal's life, and learning about threats from others allows avoiding first-hand aversive and often fatal experiences. Fear expressed by other individuals, including those belonging to other species, may indicate the presence of a threat in the environment and is an important social cue. Humans and other animals respond to conspecifics' fear with increased activity of the amygdala, the brain structure crucial for detecting threats and mounting an appropriate response to them. It is unclear, however, whether the cross-species transmission of threat information involves similar mechanisms, e.g., whether animals respond to the aversively induced emotional arousal of humans with activation of fear-processing circuits in the brain. Here, we report that when rats interact with a human caregiver who had recently undergone fear conditioning, they show risk assessment behavior and enhanced amygdala activation. The amygdala response involves its two major parts, the basolateral and central, which detect a threat and orchestrate defensive responses. Further, we show that humans who learn about a threat by observing another aversively aroused human, similar to rats, activate the basolateral and centromedial parts of the amygdala. Our results demonstrate that rats detect the emotional arousal of recently aversively stimulated caregivers and suggest that cross-species social transmission of threat information may involve similar neural circuits in the amygdala as the within-species transmission.


Assuntos
Núcleo Central da Amígdala , Humanos , Ratos , Animais , Medo/fisiologia , Aprendizagem , Nível de Alerta/fisiologia , Afeto
3.
Nat Rev Neurosci ; 21(4): 197-212, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32221497

RESUMO

Learning the value of stimuli and actions from others - social learning - adaptively contributes to individual survival and plays a key role in cultural evolution. We review research across species targeting the neural and computational systems of social learning in both the aversive and appetitive domains. Social learning generally follows the same principles as self-experienced value-based learning, including computations of prediction errors and is implemented in brain circuits activated across task domains together with regions processing social information. We integrate neural and computational perspectives of social learning with an understanding of behaviour of varying complexity, from basic threat avoidance to complex social learning strategies and cultural phenomena.


Assuntos
Encéfalo/fisiologia , Aprendizado Social/fisiologia , Animais , Condicionamento Clássico , Humanos , Modelos Neurológicos , Reforço Psicológico , Comportamento Social
4.
J Neurosci ; 43(17): 3176-3185, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36963846

RESUMO

Prediction error (PE) is the mismatch between a prior expectation and reality, and it lies at the core of associative learning about aversive and appetitive stimuli. Human studies on fear learning have linked the amygdala to aversive PEs. In contrast, the relationship between the amygdala and PE in appetitive settings and stimuli, unlike those that induce fear, has received less research attention. Animal studies show that the amygdala is a functionally heterogeneous structure. Nevertheless, the role of the amygdala nuclei in PE signaling remains unknown in humans. To clarify the role of two subdivisions of the human amygdala, the centromedial amygdala (CMA) and basolateral amygdala (BLA), in appetitive and aversive PE signaling, we used gustatory pavlovian learning involving eating-related naturalistic outcomes. Thirty-eight right-handed individuals (19 females) participated in the study. We found that surprise with neutral feedback when a reward is expected triggers activity within the left and right CMA. When an aversive outcome is expected, surprise with neutral feedback triggers activity only within the left CMA. Notably, the BLA was not activated by those conditions. Thus, the CMA engages in negative PE signaling during appetitive and aversive gustatory pavlovian learning, whereas the BLA is not critical for this process. In addition, PE-related activity within the left CMA during aversive learning is negatively correlated with neuroticism and positively correlated with extraversion. The findings indicate the importance of the CMA in gustatory learning when the value of outcomes changes and have implications for understanding psychological conditions that manifest perturbed processing of negative PEs.SIGNIFICANCE STATEMENT A discrepancy between a prediction and an actual outcome (PE) plays a crucial role in learning. Learning improves when an outcome is more significant than expected (positive PE) and worsens when it is smaller than expected (negative PE). We found that the negative PE during appetitive and aversive taste learning is associated with increased activity of the CMA, which suggests that the CMA controls taste learning. Our findings may have implications for understanding psychological states associated with deficient learning from negative PEs, such as obesity and addictive behaviors.


Assuntos
Aprendizagem da Esquiva , Complexo Nuclear Basolateral da Amígdala , Animais , Feminino , Humanos , Tonsila do Cerebelo/diagnóstico por imagem , Condicionamento Clássico , Medo , Comportamento Apetitivo
5.
Mol Psychiatry ; 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798419

RESUMO

The Wnt/ß-catenin pathway contains multiple high-confidence risk genes that are linked to neurodevelopmental disorders, including autism spectrum disorder. However, its ubiquitous roles across brain cell types and developmental stages have made it challenging to define its impact on neural circuit development and behavior. Here, we show that TCF7L2, which is a key transcriptional effector of the Wnt/ß-catenin pathway, plays a cell-autonomous role in postnatal astrocyte maturation and impacts adult social behavior. TCF7L2 was the dominant Wnt effector that was expressed in both mouse and human astrocytes, with a peak during astrocyte maturation. The conditional knockout of Tcf7l2 in postnatal astrocytes led to an enlargement of astrocytes with defective tiling and gap junction coupling. These mice also exhibited an increase in the number of cortical excitatory and inhibitory synapses and a marked increase in social interaction by adulthood. These data reveal an astrocytic role for developmental Wnt/ß-catenin signaling in restricting excitatory synapse numbers and regulating adult social behavior.

6.
Cereb Cortex ; 33(8): 5007-5024, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36218820

RESUMO

Social support during exposure-based psychotherapy is believed to diminish fear and improve therapy outcomes. However, some clinical trials challenge that notion. Underlying mechanisms remain unknown, hindering the understanding of benefits and pitfalls of such approach. To study social buffering during fear extinction, we developed a behavioral model in which partner's presence decreases response to fear-associated stimuli. To identify the neuronal background of this phenomenon, we combined behavioral testing with c-Fos mapping, optogenetics, and chemogenetics. We found that the presence of a partner during fear extinction training causes robust inhibition of freezing; the effect, however, disappears in subjects tested individually on the following day. It is accompanied by lowered activation of the prelimbic (PL) and anterior cingulate (ACC) but not infralimbic (IL) cortex. Accordingly, blocking of IL activity left social buffering intact. Similarly, inhibition of the ventral hippocampus-PL pathway, suppressing fear response after prolonged extinction training, did not diminish the effect. In contrast, inhibition of the ACC-central amygdala pathway, modulating social behavior, blocked social buffering. By reporting that social modulation of fear inhibition is transient and insensitive to manipulation of the fear extinction-related circuits, we show that the mechanisms underlying social buffering during extinction are different from those of individual extinction.


Assuntos
Tonsila do Cerebelo , Córtex Pré-Frontal , Humanos , Tonsila do Cerebelo/fisiologia , Córtex Pré-Frontal/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Córtex Cerebral/metabolismo
7.
Cell Mol Life Sci ; 79(5): 278, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35505150

RESUMO

Alterations in social behavior are core symptoms of major developmental neuropsychiatric diseases such as autism spectrum disorders or schizophrenia. Hence, understanding their molecular and cellular underpinnings constitutes the major research task. Dysregulation of the global gene expression program in the developing brain leads to modifications in a number of neuronal connections, synaptic strength and shape, causing unbalanced neuronal plasticity, which may be important substrate in the pathogenesis of neurodevelopmental disorders, contributing to their clinical outcome. Serum response factor (SRF) is a major transcription factor in the brain. The behavioral influence of SRF deletion during neuronal differentiation and maturation has never been studied because previous attempts to knock-out the gene caused premature death. Herein, we generated mice that lacked SRF from early postnatal development to precisely investigate the role of SRF starting in the specific time window before maturation of excitatory synapses that are located on dendritic spine occurs. We show that the time-controlled loss of SRF in neurons alters specific aspects of social behaviors in SRF knock-out mice, and causes deficits in developmental spine maturation at both the structural and functional levels, including downregulated expression of the AMPARs subunits GluA1 and GluA2, and increases the percentage of filopodial/immature dendritic spines. In aggregate, our study uncovers the consequences of postnatal SRF elimination for spine maturation and social interactions revealing novel mechanisms underlying developmental neuropsychiatric diseases.


Assuntos
Fator de Resposta Sérica/metabolismo , Interação Social , Animais , Espinhas Dendríticas/fisiologia , Camundongos , Plasticidade Neuronal , Fator de Resposta Sérica/genética , Sinapses/metabolismo
8.
J Neurosci ; 41(44): 9129-9140, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34518304

RESUMO

In contrast to easily formed fear memories, fear extinction requires prolonged training. The prelimbic cortex (PL), which integrates signals from brain structures involved in fear conditioning and extinction such as the ventral hippocampus (vHIP) and the basolateral amygdala (BL), is necessary for fear memory retrieval. Little is known, however, about how the vHIP and BL inputs to the PL regulate the display of fear after fear extinction. Using functional anatomy tracing in male rats, we found two distinct subpopulations of neurons in the PL activated by either the successful extinction or the relapse of fear. During the retrieval of fear extinction memory, the dominant input to active neurons in the PL was from the vHIP, whereas the retrieval of fear memory, regardless of the age of a memory and testing context, was associated with greater BL input. Optogenetic stimulation of the vHIP-PL pathway after one session of fear extinction increased conditioned fear, whereas stimulation of the vHIP inputs after several sessions of extinction decreased the conditioned fear response. This latter effect was, however, transient, as stimulation of this pathway 28 d after extinction increased conditioned fear response again. The results show that repeated fear extinction training gradually changes vHIP-PL connectivity, making fear suppression possible, whereas in the absence of fear suppression from the vHIP, signals from the BL can play a dominant role, resulting in high levels of fear.SIGNIFICANCE STATEMENT Behavioral therapies of fear are based on extinction learning. As extinction memories fade over time, such therapies produce only a temporary suppression of fear, which constitutes a clinical and societal challenge. In our study, we provide a framework for understating the underlying mechanism by which extinction of fear memories fade by demonstrating the existence of two subpopulations of neurons in the prelimbic cortex associated with low and high levels of fear. Insufficient extinction and exposure to the context in which fear memory was formed promoted high fear neuronal activity in the prelimbic cortex, leading to fear retrieval. Extensive extinction training, on the other hand, boosted low fear neuronal activity and, as a result, extinction memory retrieval. This effect was, however, transient and disappeared with time.


Assuntos
Extinção Psicológica , Medo , Hipocampo/fisiologia , Tonsila do Cerebelo/fisiologia , Animais , Masculino , Memória , Vias Neurais/fisiologia , Neurônios/fisiologia , Ratos , Ratos Long-Evans , Ratos Wistar
9.
Neuroimage ; 263: 119648, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36162633

RESUMO

Humans often benefit from social cues when learning about the world. For instance, learning about threats from others can save the individual from dangerous first-hand experiences. Familiarity is believed to increase the effectiveness of social learning, but it is not clear whether it plays a role in learning about threats. Using functional magnetic resonance imaging, we undertook a naturalistic approach and investigated whether there was a difference between observational fear learning from friends and strangers. Participants (observers) witnessed either their friends or strangers (demonstrators) receiving aversive (shock) stimuli paired with colored squares (observational learning stage). Subsequently, participants watched the same squares, but without receiving any shocks (direct-expression stage). We observed a similar pattern of brain activity in both groups of observers. Regions related to threat responses (amygdala, anterior insula, anterior cingulate cortex) and social perception (fusiform gyrus, posterior superior temporal sulcus) were activated during the observational phase, possibly reflecting the emotional contagion process. The anterior insula and anterior cingulate cortex were also activated during the subsequent stage, indicating the expression of learned threat. Because there were no differences between participants observing friends and strangers, we argue that social threat learning is independent of the level of familiarity with the demonstrator.


Assuntos
Amigos , Imageamento por Ressonância Magnética , Humanos , Medo/fisiologia , Emoções , Tonsila do Cerebelo/fisiologia
10.
Proc Biol Sci ; 289(1972): 20212747, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35414242

RESUMO

The enlarged brains of homeotherms bring behavioural advantages, but also incur high energy expenditures. The 'expensive brain' (EB) hypothesis posits that the energetic costs of the enlarged brain and the resulting increased cognitive abilities (CA) were met by either increased energy turnover or reduced allocation to other expensive organs, such as the gut. We tested the EB hypothesis by analysing correlated responses to selection in an experimental evolution model system, which comprises line types of laboratory mice selected for high or low basal metabolic rate (BMR), maximum (VO2max) metabolic rates and random-bred (unselected) lines. The traits are implicated in the evolution of homeothermy, having been pre-requisites for the encephalization and exceptional CA of mammals, including humans. High-BMR mice had bigger guts, but not brains, than mice of other line types. Yet, they were superior in the cognitive tasks carried out in both reward and avoidance learning contexts and had higher neuronal plasticity (indexed as the long-term potentiation) than their counterparts. Our data indicate that the evolutionary increase of CA in mammals was initially associated with increased BMR and brain plasticity. It was also fuelled by an enlarged gut, which was not traded off for brain size.


Assuntos
Metabolismo Basal , Metabolismo Energético , Animais , Metabolismo Basal/fisiologia , Evolução Biológica , Regulação da Temperatura Corporal , Encéfalo/metabolismo , Cognição , Mamíferos , Camundongos , Tamanho do Órgão/fisiologia
11.
EMBO Rep ; 21(8): e48882, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32558077

RESUMO

Synapses are the regions of the neuron that enable the transmission and propagation of action potentials on the cost of high energy consumption and elevated demand for mitochondrial ATP production. The rapid changes in local energetic requirements at dendritic spines imply the role of mitochondria in the maintenance of their homeostasis. Using global proteomic analysis supported with complementary experimental approaches, we show that an essential pool of mitochondrial proteins is locally produced at the synapse indicating that mitochondrial protein biogenesis takes place locally to maintain functional mitochondria in axons and dendrites. Furthermore, we show that stimulation of synaptoneurosomes induces the local synthesis of mitochondrial proteins that are transported to the mitochondria and incorporated into the protein supercomplexes of the respiratory chain. Importantly, in a mouse model of fragile X syndrome, Fmr1 KO mice, a common disease associated with dysregulation of synaptic protein synthesis, we observed altered morphology and respiration rates of synaptic mitochondria. That indicates that the local production of mitochondrial proteins plays an essential role in synaptic functions.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Animais , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/genética , Proteômica , Sinapses
13.
Neurobiol Dis ; 130: 104499, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31176717

RESUMO

TAR DNA-binding protein 43 (TDP-43) is a hallmark of some neurodegenerative disorders, such as frontotemporal lobar degeneration and amyotrophic lateral sclerosis. TDP-43-related pathology is characterized by its abnormally phosphorylated and ubiquitinated aggregates. It is involved in many aspects of RNA processing, including mRNA splicing, transport, and translation. However, its exact physiological function and role in mechanisms that lead to neuronal degeneration remain elusive. Transgenic rats that were characterized by TDP-43 depletion in neurons exhibited enhancement of the acquisition of fear memory. At the cellular level, TDP-43-depleted neurons exhibited a decrease in the short-term plasticity of intrinsic neuronal excitability. The induction of long-term potentiation in the CA3-CA1 areas of the hippocampus resulted in more stable synaptic enhancement. At the molecular level, the protein levels of an unedited (R) FLOP variant of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) GluR1 and GluR2/3 subunits decreased in the hippocampus. Alterations of FLOP/FLIP subunit composition affected AMPAR kinetics, reflected by cyclothiazide-dependent slowing of the decay time of AMPAR-mediated miniature excitatory postsynaptic currents. These findings suggest that TDP-43 may regulate activity-dependent neuronal plasticity, possibly by regulating the splicing of genes that are responsible for fast synaptic transmission and membrane potential.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Hipocampo/metabolismo , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Espinhas Dendríticas/metabolismo , Ratos , Ratos Transgênicos , Receptores de AMPA/metabolismo , Transmissão Sináptica/fisiologia
14.
Cereb Cortex ; 28(5): 1645-1655, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334281

RESUMO

The behavioral changes that comprise operant learning are associated with plasticity in early sensory cortices as well as with modulation of gene expression, but the connection between the behavioral, electrophysiological, and molecular changes is only partially understood. We specifically manipulated c-Fos expression, a hallmark of learning-induced synaptic plasticity, in auditory cortex of adult mice using a novel approach based on RNA interference. Locally blocking c-Fos expression caused a specific behavioral deficit in a sound discrimination task, in parallel with decreased cortical experience-dependent plasticity, without affecting baseline excitability or basic auditory processing. Thus, c-Fos-dependent experience-dependent cortical plasticity is necessary for frequency discrimination in an operant behavioral task. Our results connect behavioral, molecular and physiological changes and demonstrate a role of c-Fos in experience-dependent plasticity and learning.


Assuntos
Córtex Auditivo/fisiologia , Aprendizagem por Discriminação/fisiologia , Potenciais Evocados Auditivos/fisiologia , Plasticidade Neuronal/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Estimulação Acústica , Potenciais de Ação/fisiologia , Animais , Aprendizagem da Esquiva , Eletroencefalografia , Extinção Psicológica , Medo/psicologia , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Proteínas Proto-Oncogênicas c-fos/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
15.
Proc Natl Acad Sci U S A ; 109(42): 17093-8, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-23027931

RESUMO

The memory of fear extinction is context dependent: fear that is suppressed in one context readily renews in another. Understanding of the underlying neuronal circuits is, therefore, of considerable clinical relevance for anxiety disorders. Prefrontal cortical and hippocampal inputs to the amygdala have recently been shown to regulate the retrieval of fear memories, but the cellular organization of these projections remains unclear. By using anterograde tracing in a transgenic rat in which neurons express a dendritically-targeted PSD-95:Venus fusion protein under the control of a c-fos promoter, we found that, during the retrieval of extinction memory, the dominant input to active neurons in the lateral amygdala was from the infralimbic cortex, whereas the retrieval of fear memory was associated with greater hippocampal and prelimbic inputs. This pattern of retrieval-related afferent input was absent in the central nucleus of the amygdala. Our data show functional anatomy of neural circuits regulating fear and extinction, providing a framework for therapeutic manipulations of these circuits.


Assuntos
Tonsila do Cerebelo/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Sistema Límbico/fisiologia , Memória/fisiologia , Vias Neurais/anatomia & histologia , Proteínas Recombinantes de Fusão/metabolismo , Análise de Variância , Animais , Proteínas de Bactérias/metabolismo , Condicionamento Psicológico , Primers do DNA/genética , Proteína 4 Homóloga a Disks-Large , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Luminescentes/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia Confocal , Vias Neurais/fisiologia , Ratos , Ratos Transgênicos , Gravação em Vídeo
16.
J Neurosci ; 33(36): 14591-600, 2013 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-24005309

RESUMO

Learning how to avoid danger and pursue reward depends on negative emotions motivating aversive learning and positive emotions motivating appetitive learning. The amygdala is a key component of the brain emotional system; however, an understanding of how various emotions are differentially processed in the amygdala has yet to be achieved. We report that matrix metalloproteinase-9 (MMP-9, extracellularly operating enzyme) in the central nucleus of the amygdala (CeA) is crucial for appetitive, but not for aversive, learning in mice. The knock-out of MMP-9 impairs appetitively motivated conditioning, but not an aversive one. MMP-9 is present at the excitatory synapses in the CeA with its activity greatly enhanced after the appetitive training. Finally, blocking extracellular MMP-9 activity with its inhibitor TIMP-1 provides evidence that local MMP-9 activity in the CeA is crucial for the appetitive, but not for aversive, learning.


Assuntos
Tonsila do Cerebelo/fisiologia , Condicionamento Operante , Metaloproteinase 9 da Matriz/metabolismo , Recompensa , Tonsila do Cerebelo/metabolismo , Animais , Comportamento Apetitivo , Metaloproteinase 9 da Matriz/efeitos dos fármacos , Metaloproteinase 9 da Matriz/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Neurônios/fisiologia , Sinapses/metabolismo , Sinapses/fisiologia , Inibidor Tecidual de Metaloproteinase-1/farmacologia
17.
J Biol Chem ; 288(29): 20978-20991, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23720741

RESUMO

Memory formation requires learning-based molecular and structural changes in neurons, whereas matrix metalloproteinase (MMP) 9 is involved in the synaptic plasticity by cleaving extracellular matrix proteins and, thus, is associated with learning processes in the mammalian brain. Because the mechanisms of MMP-9 transcription in the brain are poorly understood, this study aimed to elucidate regulation of MMP-9 gene expression in the mouse brain after fear learning. We show here that contextual fear conditioning markedly increases MMP-9 transcription, followed by enhanced enzymatic levels in the three major brain structures implicated in fear learning, i.e. the amygdala, hippocampus, and prefrontal cortex. To reveal the role of AP-1 transcription factor in MMP-9 gene expression, we have used reporter gene constructs with specifically mutated AP-1 gene promoter sites. The constructs were introduced into the medial prefrontal cortex of neonatal mouse pups by electroporation, and the regulation of MMP-9 transcription was studied after contextual fear conditioning in the adult animals. Specifically, -42/-50- and -478/-486-bp AP-1 binding motifs of the mouse MMP-9 promoter sequence have been found to play a major role in MMP-9 gene activation. Furthermore, increases in MMP-9 gene promoter binding by the AP-1 transcription factor proteins c-Fos and c-Jun have been demonstrated in all three brain structures under investigation. Hence, our results suggest that AP-1 acts as a positive regulator of MMP-9 transcription in the brain following fear learning.


Assuntos
Encéfalo/enzimologia , Encéfalo/fisiologia , Medo , Aprendizagem , Metaloproteinase 9 da Matriz/genética , Transcrição Gênica , Animais , Pareamento de Bases/genética , Sequência de Bases , Condicionamento Psicológico , Distroglicanas/metabolismo , Regulação Enzimológica da Expressão Gênica , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Motivos de Nucleotídeos/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Transcrição AP-1/metabolismo
18.
Neurosci Biobehav Rev ; 161: 105674, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38614451

RESUMO

This review delves into the phenomenon of positive emotional contagion (PEC) in rodents, an area that remains relatively understudied compared to the well-explored realm of negative emotions such as fear or pain. Rodents exhibit clear preferences for individuals expressing positive emotions over neutral counterparts, underscoring the importance of detecting and responding to positive emotional signals from others. We thoroughly examine the adaptive function of PEC, highlighting its pivotal role in social learning and environmental adaptation. The developmental aspect of the ability to interpret positive emotions is explored, intricately linked to maternal care and social interactions, with oxytocin playing a central role in these processes. We discuss the potential involvement of the reward system and draw attention to persisting gaps in our understanding of the neural mechanisms governing PEC. Presenting a comprehensive overview of the existing literature, we focus on food-related protocols such as the Social Transmission of Food Preferences paradigm and tickling behaviour. Our review emphasizes the pressing need for further research to address lingering questions and advance our comprehension of positive emotional contagion.


Assuntos
Emoções , Emoções/fisiologia , Animais , Humanos , Comportamento Social , Interação Social , Aprendizado Social/fisiologia , Comportamento Animal/fisiologia , Ocitocina
19.
J Neurosci ; 31(47): 17269-77, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22114293

RESUMO

Knowing when and where to express fear is essential to survival. Recent work in fear extinction paradigms reveals that the contextual regulation of fear involves a neural network involving the hippocampus, medial prefrontal cortex, and amygdala. The amygdaloid basal nuclei (BA) receive convergent input from the ventral hippocampus (VH) and prelimbic (PL) prefrontal cortex and may integrate VH and PL input to regulate fear expression. To examine the functional organization of this neural circuit, we used cellular imaging of c-fos expression in anatomically defined neuronal populations and circuit disconnections to identify the pathways involved in the contextual control of extinguished fear. Before behavioral testing, we infused a retrograde tracer into the amygdala to label BA-projecting neurons in VH and PL. Rats then underwent fear conditioning and extinction and were tested for their fear to the extinguished conditioned stimulus (CS) in either the extinction context or in another context; freezing behavior served as the index of conditional fear. CS presentation outside the extinction context renewed conditional freezing and was associated with significantly more c-fos expression in BA-projecting neurons in the VH and PL than that induced by CS presentation in the extinction context. We next examined whether direct or indirect projections of VH to BA mediate fear renewal. Interestingly, disconnections of the VH from either the BA or PL eliminated renewal. These findings suggest that convergent inputs from both the VH and PL in the BA mediate the contextual control of fear after extinction.


Assuntos
Tonsila do Cerebelo/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Hipocampo/fisiologia , Vias Neurais/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Medo/psicologia , Masculino , Distribuição Aleatória , Ratos , Ratos Long-Evans
20.
iScience ; 25(7): 104635, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35800771

RESUMO

Until recently laboratory tasks for studying behavior were highly artificial, simplified, and designed without consideration for the environmental or social context. Although such an approach offers good control over behavior, it does not allow for researching either voluntary responses or individual differences. Importantly for neuroscience studies, the activity of the neural circuits involved in producing unnatural, artificial behavior is variable and hard to predict. In addition, different ensembles may be activated depending on the strategy the animal adopts to deal with the spurious problem. Thus, artificial and simplified tasks based on responses, which do not occur spontaneously entail problems with modeling behavioral impairments and underlying brain deficits. To develop valid models of human disorders we need to test spontaneous behaviors consistently engaging well-defined, evolutionarily conserved neuronal circuits. Such research focuses on behavioral patterns relevant for surviving and thriving under varying environmental conditions, which also enable high reproducibility across different testing settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA