Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hepatology ; 78(2): 416-433, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35920301

RESUMO

BACKGROUND AND AIMS: The NADPH oxidase NOX4 plays a tumor-suppressor function in HCC. Silencing NOX4 confers higher proliferative and migratory capacity to HCC cells and increases their in vivo tumorigenic potential in xenografts in mice. NOX4 gene deletions are frequent in HCC, correlating with higher tumor grade and worse recurrence-free and overall survival rates. However, despite the accumulating evidence of a protective regulatory role in HCC, the cellular processes governed by NOX4 are not yet understood. Accordingly, the aim of this work was to better understand the molecular mechanisms regulated by NOX4 in HCC in order to explain its tumor-suppressor action. APPROACH AND RESULTS: Experimental models: cell-based loss or gain of NOX4 function experiments, in vivo hepatocarcinogenesis induced by diethylnitrosamine in Nox4 -deficient mice, and analyses in human HCC samples. Methods include cellular and molecular biology analyses, proteomics, transcriptomics, and metabolomics, as well as histological and immunohistochemical analyses in tissues. Results identified MYC as being negatively regulated by NOX4. MYC mediated mitochondrial dynamics and a transcriptional program leading to increased oxidative metabolism, enhanced use of both glucose and fatty acids, and an overall higher energetic capacity and ATP level. NOX4 deletion induced a redox imbalance that augmented nuclear factor erythroid 2-related factor 2 (Nrf2) activity and was responsible for MYC up-regulation. CONCLUSIONS: Loss of NOX4 in HCC tumor cells induces metabolic reprogramming in a Nrf2/MYC-dependent manner to promote HCC progression.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Camundongos , Animais , NADPH Oxidases/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , Oxirredução , Homeostase , Espécies Reativas de Oxigênio/metabolismo
2.
Am J Physiol Lung Cell Mol Physiol ; 325(2): L270-L276, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37401390

RESUMO

Pro-proliferative, M2-like polarization of macrophages is a critical step in the development of fibrosis and remodeling in chronic lung diseases such as pulmonary fibrosis and pulmonary hypertension. Macrophages in healthy and diseased lungs express gremlin 1 (Grem1), a secreted glycoprotein that acts in both paracrine and autocrine manners to modulate cellular function. Increased Grem1 expression plays a central role in pulmonary fibrosis and remodeling, however, the role of Grem1 in M2-like polarization of macrophages has not previously been explored. The results reported here show that recombinant Grem1 potentiated M2-like polarization of mouse macrophages and bone marrow-derived macrophages (BMDMs) in response to the Th2 cytokines IL4 and IL13. Genetic depletion of Grem1 in BMDMs inhibited M2 polarization while exogenous gremlin 1 could partially rescue this effect. Taken together, these findings reveal that gremlin 1 is required for M2-like polarization of macrophages.NEW & NOTEWORTHY We show here that gremlin 1 potentiated M2 polarization of mouse bone marrow-derived macrophages (BMDMs) in response to the Th2 cytokines IL4 and IL13. Genetic depletion of Grem1 in BMDMs inhibited M2 polarization while exogenous gremlin 1 partially rescued this effect. Taken together, these findings reveal a previously unknown requirement for gremlin 1 in M2 polarization of macrophages and suggest a novel cellular mechanism promoting fibrosis and remodeling in lung diseases.


Assuntos
Fibrose Pulmonar , Camundongos , Animais , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Interleucina-4/genética , Interleucina-4/farmacologia , Interleucina-4/metabolismo , Interleucina-13/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , Fibrose
3.
Handb Exp Pharmacol ; 264: 27-47, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32767144

RESUMO

A number of diseases and conditions have been associated with prolonged or persistent exposure to non-physiological levels of reactive oxygen species (ROS). Similarly, ROS underproduction due to loss-of-function mutations in superoxide or hydrogen peroxide (H2O2)-generating enzymes is a risk factor or causative for certain diseases. However, ROS are required for basic cell functions; in particular the diffusible second messenger H2O2 that serves as signaling molecule in redox processes. This activity sets H2O2 apart from highly reactive oxygen radicals and influences the approach to drug discovery, clinical utility, and therapeutic intervention. Here we review the chemical and biological fundamentals of ROS with emphasis on H2O2 as a signaling conduit and initiator of redox relays and propose an integrated view of physiological versus non-physiological reactive species. Therapeutic interventions that target persistently altered ROS levels should include both selective inhibition of a specific source of primary ROS and careful consideration of a targeted pro-oxidant approach, an avenue that is still underdeveloped. Both strategies require attention to redox dynamics in complex cellular systems, integration of the overall spatiotemporal cellular environment, and target validation to yield effective and safe therapeutics. The only professional primary ROS producers are NADPH oxidases (NOX1-5, DUOX1-2). Many other enzymes, e.g., xanthine oxidase (XO), monoamine oxidases (MAO), lysyl oxidases (LO), lipoxygenase (LOX), and cyclooxygenase (COX), produce superoxide and H2O2 secondary to their primary metabolic function. Superoxide is too reactive to disseminate, but H2O2 is diffusible, only limited by adjacent PRDXs or GPXs, and can be apically secreted and imported into cells through aquaporin (AQP) channels. H2O2 redox signaling includes oxidation of the active site thiol in protein tyrosine phosphatases, which will inhibit their activity and thereby increase tyrosine phosphorylation on target proteins. Essential functions include the oxidative burst by NOX2 as antimicrobial innate immune response; gastrointestinal NOX1 and DUOX2 generating low H2O2 concentrations sufficient to trigger antivirulence mechanisms; and thyroidal DUOX2 essential for providing H2O2 reduced by TPO to oxidize iodide to an iodinating form which is then attached to tyrosyls in TG. Loss-of-function (LoF) variants in TPO or DUOX2 cause congenital hypothyroidism and LoF variants in the NOX2 complex chronic granulomatous disease.


Assuntos
Peróxido de Hidrogênio , Fenômenos Fisiológicos , NADPH Oxidases/metabolismo , Oxidantes , Oxirredução , Espécies Reativas de Oxigênio
4.
J Biol Chem ; 293(23): 8750-8760, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29674345

RESUMO

Protein-protein interactions critically regulate many biological systems, but quantifying functional assembly of multipass membrane complexes in their native context is still challenging. Here, we combined modeling-assisted protein modification and information from human disease variants with a minimal-size fusion tag, split-luciferase-based approach to probe assembly of the NADPH oxidase 4 (NOX4)-p22phox enzyme, an integral membrane complex with unresolved structure, which is required for electron transfer and generation of reactive oxygen species (ROS). Integrated analyses of heterodimerization, trafficking, and catalytic activity identified determinants for the NOX4-p22phox interaction, such as heme incorporation into NOX4 and hot spot residues in transmembrane domains 1 and 4 in p22phox Moreover, their effect on NOX4 maturation and ROS generation was analyzed. We propose that this reversible and quantitative protein-protein interaction technique with its small split-fragment approach will provide a protein engineering and discovery tool not only for NOX research, but also for other intricate membrane protein complexes, and may thereby facilitate new drug discovery strategies for managing NOX-associated diseases.


Assuntos
NADPH Oxidase 4/metabolismo , NADPH Oxidases/metabolismo , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Animais , Células COS , Membrana Celular/química , Membrana Celular/metabolismo , Chlorocebus aethiops , Heme/química , Heme/metabolismo , Humanos , Modelos Moleculares , NADPH Oxidase 4/química , NADPH Oxidases/química , Domínios Proteicos , Multimerização Proteica , Espécies Reativas de Oxigênio/metabolismo
5.
Exp Dermatol ; 28(11): 1298-1308, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31487753

RESUMO

BACKGROUND: Atopic dermatitis (AD) is a complex skin disease involving causative effects from both intrinsic and extrinsic sources. Murine models of the disease often fall short in one of these components and, as a result, do not fully encapsulate these disease mechanisms. OBJECTIVE: We aimed to determine whether the protease-activated receptor 2 over-expressor mouse (PAR2OE) with topical house dust mite (HDM) application is a more comprehensive and clinically representative AD model. METHODS: Following HDM extract application to PAR2OE mice and controls, AD clinical scoring, itching behaviour, skin morphology and structure, barrier function, immune cell infiltration and inflammatory markers were assessed. Skin morphology was analysed using haematoxylin and eosin staining, and barrier function was assessed by transepidermal water loss measurements. Immune infiltrate was characterised by histological and immunofluorescence staining. Finally, an assessment of AD-related gene expression was performed using quantitative RT-PCR. RESULTS: PAR2OE mice treated with HDM displays all the characteristic clinical symptoms including erythema, dryness and oedema, skin morphology, itch and inflammation typically seen in patients with AD. There is a significant influx of mast cells (P < .01) and eosinophils (P < .0001) into the dermis of these mice. Furthermore, the PAR2OE + HDM mice exhibit similar expression patterns of key differentially expressed genes as seen in human AD. CONCLUSION: The PAR2OE + HDM mouse presents with a classic AD pathophysiology and is a valuable model in terms of reproducibility and overall disease representation to study the condition and potential therapeutic approaches.


Assuntos
Dermatite Atópica/etiologia , Modelos Animais de Doenças , Pyroglyphidae/imunologia , Receptor PAR-2/fisiologia , Animais , Dermatite Atópica/patologia , Pele/imunologia , Pele/patologia
6.
Proc Natl Acad Sci U S A ; 113(37): 10406-11, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27562167

RESUMO

Strengthening the host immune system to fully exploit its potential as antimicrobial defense is vital in countering antibiotic resistance. Chemical compounds released during bidirectional host-pathogen cross-talk, which follows a sensing-response paradigm, can serve as protective mediators. A potent, diffusible messenger is hydrogen peroxide (H2O2), but its consequences on extracellular pathogens are unknown. Here we show that H2O2, released by the host on pathogen contact, subverts the tyrosine signaling network of a number of bacteria accustomed to low-oxygen environments. This defense mechanism uses heme-containing bacterial enzymes with peroxidase-like activity to facilitate phosphotyrosine (p-Tyr) oxidation. An intrabacterial reaction converts p-Tyr to protein-bound dopa (PB-DOPA) via a tyrosinyl radical intermediate, thereby altering antioxidant defense and inactivating enzymes involved in polysaccharide biosynthesis and metabolism. Disruption of bacterial signaling by DOPA modification reveals an infection containment strategy that weakens bacterial fitness and could be a blueprint for antivirulence approaches.


Assuntos
Di-Hidroxifenilalanina/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , NADPH Oxidases/metabolismo , Tirosina/metabolismo , Campylobacter jejuni/metabolismo , Campylobacter jejuni/patogenicidade , Linhagem Celular , Di-Hidroxifenilalanina/química , Farmacorresistência Bacteriana/imunologia , Heme/química , Heme/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Sistema Imunitário/metabolismo , Sistema Imunitário/microbiologia , Klebsiella pneumoniae/metabolismo , Klebsiella pneumoniae/patogenicidade , Listeria monocytogenes/metabolismo , Listeria monocytogenes/patogenicidade , NADPH Oxidases/química , Oxirredução , Fosforilação Oxidativa , Oxigênio/metabolismo , Peroxidase/química , Peroxidase/metabolismo , Fosfotirosina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Salmonella enterica/metabolismo , Salmonella enterica/patogenicidade
7.
Biochim Biophys Acta Gen Subj ; 1861(2): 198-204, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27818165

RESUMO

BACKGROUND: Hydrocyanines are widely used as fluorogenic probes to monitor reactive oxygen species (ROS) generation in cells. Their brightness, stability to autoxidation and photobleaching, large signal change upon oxidation, pH independence and red/near infrared emission are particularly attractive for imaging ROS in live tissue. METHODS: Using confocal fluorescence microscopy we have examined an interference of mitochondrial membrane potential (ΔΨm) with fluorescence intensity and localisation of a commercial hydro-Cy3 probe in respiring and non-respiring colon carcinoma HCT116 cells. RESULTS: We found that the oxidised (fluorescent) form of hydro-Cy3 is highly homologous to the common ΔΨm-sensitive probe JC-1, which accumulates and aggregates only in 'energised' negatively charged mitochondrial matrix. Therefore, hydro-Cy3 oxidised by hydroxyl and superoxide radicals tends to accumulate in mitochondrial matrix, but dissipates and loses brightness as soon as ΔΨm is compromised. Experiments with mitochondrial inhibitor oligomycin and uncoupler FCCP, as well as a common ROS producer paraquat demonstrated that signals of the oxidised hydro-Cy3 probe rapidly and strongly decrease upon mitochondrial depolarisation, regardless of the rate of cellular ROS production. CONCLUSIONS: While analysing ROS-derived fluorescence of commercial hydrocyanine probes, an accurate control of ΔΨm is required. GENERAL SIGNIFICANCE: If not accounted for, non-specific effect of mitochondrial polarisation state on the behaviour of oxidised hydrocyanines can cause artefacts and data misinterpretation in ROS studies.


Assuntos
Carbocianinas/metabolismo , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Linhagem Celular Tumoral , Fluorescência , Células HCT116 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Oligomicinas/metabolismo , Oxirredução , Superóxidos/metabolismo
8.
Blood ; 123(23): 3635-45, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24782506

RESUMO

Neutrophil responses are central to host protection and inflammation. Neutrophil activation follows a 2-step process in which priming amplifies responses to activating stimuli. Priming is essential for life span extension, chemotaxis, and respiratory burst activity. Here we show that the cytoskeletal organizer RhoA suppresses neutrophil priming via formins. Premature granule exocytosis in Rho-deficient neutrophils activated numerous signaling pathways and amplified superoxide generation. Deletion of Rho altered front-to-back coordination by simultaneously increasing uropod elongation, leading edge formation, and random migration. Concomitant negative and positive regulation of ß2 integrin-independent and ß2 integrin-dependent migration, respectively, reveal Rho as a key decision point in the neutrophil response to discrete chemotactic agents. Although even restricted influx of Rho-deficient hyperactive neutrophils exacerbated lipopolysaccharide-mediated lung injury, deleting Rho in innate immune cells was highly protective in influenza A virus infection. Hence, Rho is a key regulator of disease progression by maintaining neutrophil quiescence and suppressing hyperresponsiveness.


Assuntos
Doenças do Sistema Imunitário , Influenza Humana/imunologia , Transtornos Leucocíticos , Neutrófilos/imunologia , Proteínas rho de Ligação ao GTP/fisiologia , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/imunologia , Animais , Células Cultivadas , Progressão da Doença , Feminino , Humanos , Vírus da Influenza A/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/imunologia , Pneumonia Viral/genética , Pneumonia Viral/imunologia , Proteína rhoA de Ligação ao GTP
9.
J Biol Chem ; 289(44): 30772-30784, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25213860

RESUMO

RhoA is thought to be essential for coordination of the membrane protrusions and retractions required for immune cell motility and directed migration. Whether the subfamily of Rho (Ras homolog) GTPases (RhoA, RhoB, and RhoC) is actually required for the directed migration of primary cells is difficult to predict. Macrophages isolated from myeloid-restricted RhoA/RhoB (conditional) double knock-out (dKO) mice did not express RhoC and were essentially "pan-Rho"-deficient. Using real-time chemotaxis assays, we found that retraction of the trailing edge was dissociated from the advance of the cell body in dKO cells, which developed extremely elongated tails. Surprisingly, velocity (of the cell body) was increased, whereas chemotactic efficiency was preserved, when compared with WT macrophages. Randomly migrating RhoA/RhoB dKO macrophages exhibited multiple small protrusions and developed large "branches" due to impaired lamellipodial retraction. A mouse model of peritonitis indicated that monocyte/macrophage recruitment was, surprisingly, more rapid in RhoA/RhoB dKO mice than in WT mice. In comparison with dKO cells, the phenotypes of single RhoA- or RhoB-deficient macrophages were mild due to mutual compensation. Furthermore, genetic deletion of RhoB partially reversed the motility defect of macrophages lacking the RhoGAP (Rho GTPase-activating protein) myosin IXb (Myo9b). In conclusion, the Rho subfamily is not required for "front end" functions (motility and chemotaxis), although both RhoA and RhoB are involved in pulling up the "back end" and resorbing lamellipodial membrane protrusions. Macrophages lacking Rho proteins migrate faster in vitro, which, in the case of the peritoneum, translates to more rapid in vivo monocyte/macrophage recruitment.


Assuntos
Macrófagos Peritoneais/enzimologia , Pseudópodes/patologia , Proteínas ras/genética , Proteínas rho de Ligação ao GTP/genética , Proteína rhoB de Ligação ao GTP/genética , Animais , Polaridade Celular , Células Cultivadas , Quimiotaxia , Feminino , Expressão Gênica , Macrófagos Peritoneais/patologia , Camundongos , Camundongos Knockout , Miosinas/genética , Peritonite/enzimologia , Peritonite/patologia , Pseudópodes/enzimologia , Proteínas ras/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP , Proteína rhoB de Ligação ao GTP/metabolismo , Proteína de Ligação a GTP rhoC
10.
Proc Natl Acad Sci U S A ; 109(25): 10024-9, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22665799

RESUMO

The anthrax lethal toxin (LT) enters host cells and enzymatically cleaves MAPKKs or MEKs. How these molecular events lead to death from anthrax remains poorly understood, but published reports suggest a direct effect of LT on vascular permeability. We have found that LT challenge in mice disrupts signaling through Tie-2, a tonically activated receptor tyrosine kinase in the endothelium. Genetic manipulations favoring Tie-2 activation enhanced interendothelial junctional contacts, prevented vascular leakage, and promoted survival following a lethal dose of LT. Cleavage of MEK1/2 was necessary for LT to induce endothelial barrier dysfunction, and activated Tie-2 signaled through the uncleaved fraction of MEKs to prevent LT's effects on the endothelium. Finally, primates infected with toxin-secreting Bacillus anthracis bacilli developed a rapid and marked imbalance in the endogenous ligands that signal Tie-2, similar to that seen in LT-challenged mice. Our results show that B. anthracis LT blunts signaling through Tie-2, thereby weakening the vascular barrier and contributing to lethality of the disease. Measurement of circulating Tie-2 ligands and manipulation of Tie-2 activity may represent future prognostic and therapeutic avenues for humans exposed to B. anthracis.


Assuntos
Antraz/fisiopatologia , Receptor TIE-2/fisiologia , Angiopoietina-2/metabolismo , Animais , Bacillus anthracis/metabolismo , Células Cultivadas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Papio
11.
PLoS One ; 19(3): e0297292, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483964

RESUMO

Inflammatory bowel disease (IBD) is characterized by chronic intestinal inflammation resulting from an inappropriate inflammatory response to intestinal microbes in a genetically susceptible host. Reactive oxygen species (ROS) generated by NADPH oxidases (NOX) provide antimicrobial defense, redox signaling and gut barrier maintenance. NADPH oxidase mutations have been identified in IBD patients, and mucus layer disruption, a critical aspect in IBD pathogenesis, was connected to NOX inactivation. To gain insight into ROS-dependent modification of epithelial glycosylation the colonic and ileal mucin O-glycome of mice with genetic NOX inactivation (Cyba mutant) was analyzed. O-glycans were released from purified murine mucins and analyzed by hydrophilic interaction ultra-performance liquid chromatography in combination with exoglycosidase digestion and mass spectrometry. We identified five novel glycans in ileum and found minor changes in O-glycans in the colon and ileum of Cyba mutant mice. Changes included an increase in glycans with terminal HexNAc and in core 2 glycans with Fuc-Gal- on C3 branch, and a decrease in core 3 glycans in the colon, while the ileum showed increased sialylation and a decrease in sulfated glycans. Our data suggest that NADPH oxidase activity alters the intestinal mucin O-glycans that may contribute to intestinal dysbiosis and chronic inflammation.


Assuntos
Doenças Inflamatórias Intestinais , Mucinas , Humanos , Camundongos , Animais , Espécies Reativas de Oxigênio , Mucinas/química , Inflamação , Polissacarídeos/química , NADPH Oxidases/genética , Mucosa Intestinal/química
12.
J Biol Chem ; 287(12): 8737-45, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22277655

RESUMO

Redox regulation of signaling molecules contributes critically to propagation of intracellular signals. The main source providing reactive oxygen species (ROS) for these physiological processes are activated NADPH oxidases (Nox/Duox family). In a pathophysiological context, some NADPH oxidase complexes produce large amounts of ROS either as part of the antimicrobial immune defense or as pathologic oxidative stress in many chronic diseases. Thus, understanding the switch from a dormant, inactive conformation to the active state of these enzymes will aid the development of inhibitors. As exogenously expressed Nox4 represents the only constitutively active enzyme in this family, analysis of structural determinants that permit this active conformation was undertaken. Our focus was directed toward a cell-based analysis of the first intracellular loop, the B-loop, and the C-terminus, two regions of Nox family enzymes that are essential for electron transfer. Mutagenesis of the B-loop identified several unique residues and a polybasic motif that contribute to the catalytic activity of Nox4. By using a multifaceted approach, including Nox4-Nox2 chimeras, mutagenesis, and insertion of Nox2 domains, we show here that the penultimate 22 amino acids of Nox4 are involved in constitutive ROS generation. The appropriate spacing of the C-terminal Nox4 sequence may cooperate with a discrete arginine-based interaction site in the B-loop, providing an intrinsically active interface that could not be disrupted by peptides derived from the Nox4 C-terminus. These results indicate that accessibility for a Nox4-specific peptide inhibitor might be difficult to achieve in vivo.


Assuntos
NADPH Oxidases/química , NADPH Oxidases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Humanos , Dados de Sequência Molecular , NADPH Oxidase 4 , NADPH Oxidases/genética , Estrutura Secundária de Proteína , Espécies Reativas de Oxigênio/metabolismo , Homologia de Sequência de Aminoácidos
14.
Redox Biol ; 67: 102905, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37820403

RESUMO

Inflammatory bowel diseases (IBD) are chronic intestinal disorders that result from an inappropriate inflammatory response to the microbiota in genetically susceptible individuals, often triggered by environmental stressors. Part of this response is the persistent inflammation and tissue injury associated with deficiency or excess of reactive oxygen species (ROS). The NADPH oxidase NOX1 is highly expressed in the intestinal epithelium, and inactivating NOX1 missense mutations are considered a risk factor for developing very early onset IBD. Albeit NOX1 has been linked to wound healing and host defence, many questions remain about its role in intestinal homeostasis and acute inflammatory conditions. Here, we used in vivo imaging in combination with inhibitor studies and germ-free conditions to conclusively identify NOX1 as essential superoxide generator for microbiota-dependent peroxynitrite production in homeostasis and during early endotoxemia. NOX1 loss-of-function variants cannot support peroxynitrite production, suggesting that the gut barrier is persistently weakened in these patients. One of the loss-of-function NOX1 variants, NOX1 p. Asn122His, features replacement of an asparagine residue located in a highly conserved HxxxHxxN motif. Modelling the NOX1-p22phox complex revealed near the distal heme an internal pocket restricted by His119 and Asn122 that is part of the oxygen reduction site. Functional studies in several human NADPH oxidases show that substitution of asparagine with amino acids with larger side chains is not tolerated, while smaller side chains can support catalytic activity. Thus, we identified a previously unrecognized structural feature required for the electron transfer mechanism in human NADPH oxidases.


Assuntos
Asparagina , Doenças Inflamatórias Intestinais , Humanos , Ácido Peroxinitroso , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Doenças Inflamatórias Intestinais/genética , Espécies Reativas de Oxigênio/metabolismo , NADPH Oxidase 1/genética
15.
Front Genet ; 14: 1276697, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075699

RESUMO

Very Early Onset Inflammatory Bowel Disease (VEO-IBD) is potentially associated with genetic disorders of the intestinal epithelial barrier or inborn errors of immunity (IEI). Dual oxidase 2 (DUOX2), an H2O2-producing NADPH oxidase expressed at apical enterocyte membranes, plays a crucial role in innate defense response. Biallelic DUOX2 mutations have been described only in two patients with VEO-IBD to date. We report the case of a 1-month-old female infant who presented persistent high C-reactive protein (CRP) levels from birth and anemia. Positive occult blood and very high calprotectin in the stool were detected and abdominal ultrasound showed thickened last ileal loop. Full endoscopy evaluation revealed important colon stenosis with multiple pseudo-polyploidy formations that resulted refractory to steroid therapy, requiring a partial colic resection. Histological examination of biopsy samples showed morphological features of IBD. Whole Exome Sequencing (WES) disclosed compound heterozygous variants in the DUOX2 gene: the pathogenic c.2524C>T; p.Arg842Ter and the variant of uncertain significance (VUS) c.3175C>T; p.Arg1059Cys. Molecular and functional studies showed the presence of mutant DUOX2 in the intestinal epithelium of the patient, albeit with at least 50% decreased catalytic activity. In conclusion, we describe the third patient to date with compound heterozygous variants of DUOX2, responsible for monogenic neonatal-IBD. This case expands the knowledge about Mendelian causes of VEO-IBD and DUOX2 deficiency. We suggest that DUOX2 should be part of the diagnostic evaluation of patients with suspected monogenic VEO-IBD.

16.
Methods Mol Biol ; 2525: 123-137, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836064

RESUMO

The proteomics field has undergone tremendous development with the introduction of many innovative methods for the identification and characterization of protein-protein interactions (PPIs). Sensitive and quantitative protein association-based techniques represent a versatile tool to probe the architecture of receptor complexes and receptor-ligand interactions and expand the drug discovery toolbox by facilitating high-throughput screening (HTS) approaches. These novel methodologies will be highly enabling for interrogation of structural determinants required for the activity of multimeric membrane-bound enzymes with unresolved crystal structure and for HTS assay development focused on unique characteristics of complex assembly instead of common catalytic features, thereby increasing specificity. We describe here an example of a binary luciferase reporter assay (NanoBiT®) to quantitatively assess the heterodimerization of the catalytically active NADPH oxidase 4 (NOX4) enzyme complex. The catalytic subunit NOX4 requires association with the protein p22phox for stabilization and enzymatic activity, but the precise manner by which these two membrane-bound proteins interact to facilitate hydrogen peroxide (H2O2) generation is currently unknown. The NanoBiT complementation reporter quantitatively determined the accurate, reduced, or failed complex assembly, which can then be confirmed by determining H2O2 release, protein expression, and heterodimer trafficking. Multimeric complex formation differs between NOX enzyme isoforms, facilitating isoform-specific, PPI-based drug screening in the future.


Assuntos
Peróxido de Hidrogênio , NADPH Oxidases , Bioensaio , Membrana Celular/metabolismo , Peróxido de Hidrogênio/metabolismo , Proteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
17.
Blood Adv ; 6(17): 5184-5197, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35819450

RESUMO

Megakaryocytes are large cells in the bone marrow that give rise to blood platelets. Platelet biogenesis involves megakaryocyte maturation, the localization of the mature cells in close proximity to bone marrow sinusoids, and the formation of protrusions, which are elongated and shed within the circulation. Rho GTPases play important roles in platelet biogenesis and function. RhoA-deficient mice display macrothrombocytopenia and a striking mislocalization of megakaryocytes into bone marrow sinusoids and a specific defect in G-protein signaling in platelets. However, the role of the closely related protein RhoB in megakaryocytes or platelets remains unknown. In this study, we show that, in contrast to RhoA deficiency, genetic ablation of RhoB in mice results in microthrombocytopenia (decreased platelet count and size). RhoB-deficient platelets displayed mild functional defects predominantly upon induction of the collagen/glycoprotein VI pathway. Megakaryocyte maturation and localization within the bone marrow, as well as actin dynamics, were not affected in the absence of RhoB. However, in vitro-generated proplatelets revealed pronouncedly impaired microtubule organization. Furthermore, RhoB-deficient platelets and megakaryocytes displayed selective defects in microtubule dynamics/stability, correlating with reduced levels of acetylated α-tubulin. Our findings imply that the reduction of this tubulin posttranslational modification results in impaired microtubule dynamics, which might contribute to microthrombocytopenia in RhoB-deficient mice. Importantly, we demonstrate that RhoA and RhoB are localized differently and have selective, nonredundant functions in the megakaryocyte lineage.


Assuntos
Megacariócitos , Trombocitopenia , Proteína rhoB de Ligação ao GTP/metabolismo , Animais , Plaquetas/metabolismo , Megacariócitos/metabolismo , Camundongos , Microtúbulos/metabolismo , Trombocitopenia/genética , Tubulina (Proteína)/metabolismo
18.
J Immunol ; 182(6): 3522-9, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19265130

RESUMO

Rho GTPases are essential regulators of signaling networks emanating from many receptors involved in innate or adaptive immunity. The Rho family member RhoA controls cytoskeletal processes as well as the activity of transcription factors such as NF-kappaB, C/EBP, and serum response factor. The multifaceted host cell activation triggered by TLRs in response to soluble and particulate microbial structures includes rapid stimulation of RhoA activity. RhoA acts downstream of TLR2 in HEK-TLR2 and monocytic THP-1 cells, but the signaling pathway connecting TLR2 and RhoA is still unknown. It is also not clear if RhoA activation is dependent on a certain TLR adapter. Using lung epithelial cells, we demonstrate TLR2- and TLR3-triggered recruitment and activation of RhoA at receptor-proximal cellular compartments. RhoA activity was dependent on TLR-mediated stimulation of Src family kinases. Both Src family kinases and RhoA were required for NF-kappaB activation, whereas RhoA was dispensable for type I IFN generation. These results suggest that RhoA plays a role downstream of MyD88-dependent and -independent TLR signaling and acts as a molecular switch downstream of TLR-Src-initiated pathways.


Assuntos
NF-kappa B/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 3 Toll-Like/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Quinases da Família src/metabolismo , Animais , Linhagem Celular , Linhagem Celular Transformada , Linhagem Celular Tumoral , Ativação Enzimática/imunologia , Humanos , Ligantes , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/fisiologia , NF-kappa B/fisiologia , Transdução de Sinais/imunologia , Receptor 2 Toll-Like/fisiologia , Receptor 3 Toll-Like/fisiologia , Quinases da Família src/fisiologia
19.
Front Immunol ; 12: 698042, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149739

RESUMO

Redox medicine is a new therapeutic concept targeting reactive oxygen species (ROS) and secondary reaction products for health benefit. The concomitant function of ROS as intracellular second messengers and extracellular mediators governing physiological redox signaling, and as damaging radicals instigating or perpetuating various pathophysiological conditions will require selective strategies for therapeutic intervention. In addition, the reactivity and quantity of the oxidant species generated, its source and cellular location in a defined disease context need to be considered to achieve the desired outcome. In inflammatory diseases associated with oxidative damage and tissue injury, ROS source specific inhibitors may provide more benefit than generalized removal of ROS. Contemporary approaches in immunity will also include the preservation or even elevation of certain oxygen metabolites to restore or improve ROS driven physiological functions including more effective redox signaling and cell-microenvironment communication, and to induce mucosal barrier integrity, eubiosis and repair processes. Increasing oxidants by host-directed immunomodulation or by exogenous supplementation seems especially promising for improving host defense. Here, we summarize examples of beneficial ROS in immune homeostasis, infection, and acute inflammatory disease, and address emerging therapeutic strategies for ROS augmentation to induce and strengthen protective host immunity.


Assuntos
Fenômenos do Sistema Imunitário/fisiologia , Oxidantes/imunologia , Espécies Reativas de Oxigênio/imunologia , Animais , Humanos , Oxidantes/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
20.
Redox Biol ; 37: 101752, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33059312

RESUMO

Dysregulated redox signaling and oxidative injury are associated with inflammatory processes and fibrosis. H2O2 generation by NOX4 has been suggested as a key driver in the development of fibrosis and a small molecule drug is under evaluation in clinical trials for idiopathic pulmonary fibrosis and primary biliary cholangitis. Fibrosis is a common complication in Crohn's disease (CD) leading to stricture formation in 35-40% of patients, who require surgical interventions in the absence of therapeutic options. Here we assess NOX4 expression in CD patients with inflammatory or stricturing disease and examine whether loss of NOX4 is beneficial in acute and fibrotic intestinal disease. NOX4 was upregulated in inflamed mucosal tissue of CD and ulcerative colitis (UC) patients, in CD ileal strictures, and in mice with intestinal inflammation. Nox4 deficiency in mice promoted pathogen colonization and exacerbated tissue injury in acute bacterial and chemical colitis. In contrast, in two chronic injury models aberrant tissue remodeling and fibrosis-related gene expression did not differ substantially between Nox4-/- mice and wildtype mice, suggesting that Nox4 is dispensable in TGF-ß1-driven intestinal fibrogenesis. While animal models do not recapitulate all the hallmarks of CD fibrosis, the tissue-protective role of Nox4 warrants a cautious approach to pharmacological inhibitors.


Assuntos
Miofibroblastos , NADPH Oxidases , Animais , Fibrose , Humanos , Peróxido de Hidrogênio , Inflamação/genética , Inflamação/patologia , Camundongos , Miofibroblastos/patologia , NADPH Oxidase 4/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA