Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 25(36): 8489-8493, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31056779

RESUMO

A chiral, octahedral M12 L12 cage, which is charge neutral and contains an internal void of about 2000 Å3 , is reported. The cage was synthesised as an enantiopure complex by virtue of amino-acid-based dicarboxylate ligands, which assemble around copper paddlewheels at the vertices of the octahedron. The cage persists in solution with retention of the fluorescence properties of the parent acid. The solid-state structure contains large pores both within and between the cages, and displays permanent porosity for the sorption of gases with retention of crystallinity. Initial tests show some enantioselectivity of the cage towards guests in solution.

2.
Angew Chem Int Ed Engl ; 56(2): 505-509, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-27925360

RESUMO

Electrochemical reduction of CO2 into liquid fuels is a promising approach to achieve a carbon-neutral energy cycle. However, conventional electrocatalysts usually suffer from low energy efficiency and poor selectivity and stability. A 3D hierarchical structure composed of mesoporous SnO2 nanosheets on carbon cloth is proposed to efficiently and selectively electroreduce CO2 to formate in aqueous media. The electrode is fabricated by a facile combination of hydrothermal reaction and calcination. It exhibits an unprecedented partial current density of about 45 mA cm-2 at a moderate overpotential (0.88 V) with high faradaic efficiency (87±2 %), which is even larger than most gas diffusion electrodes. Additionally, the electrode also demonstrates flexibility and long-term stability. The superior performance is attributed to the robust and highly porous hierarchical structure, which provides a large surface area and facilitates charge and mass transfer.

3.
Inorg Chem ; 55(13): 6692-702, 2016 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-27328206

RESUMO

A long and highly flexible internally functionalized dipyridyl ligand α,α'-p-xylylenebis(1-(4-pyridylmethylene)-piper-4-azine), L, has been employed in the synthesis of a series of coordination polymer materials with Co(II), Cd(II), and Ag(I) ions. In poly-[Cd(L)(TPA)] 1 and poly-[Co(L)(IPA)], 2, (TPA = terephthalate, IPA = isophthalate) the ligand adopts a similar linear conformation to that seen in the structure of the unbound molecule and provides a long (2.6 nm) metal-metal bridging distance. Due to the mismatch of edge lengths with that provided by the carboxylate coligands, geometric distortions from the regular dia and (4,4) network geometries for 1 and 2, respectively, are observed. In poly-[Ag2(CF3SO3)2(L)], 3, the ligand coordinates through both pyridine groups and two of the four piperazine nitrogen donors, forming a high-connectivity 2-dimensional network. The compound poly-[Ag2(L)](BF4)2·2MeCN, 4, a porous 3-dimensional cds network, undergoes a fascinating and rapid single-crystal-to-single-crystal rearrangement on exchange of the acetonitrile guests for water in ambient air, forming a nonporous hydrated network poly-[Ag2(L)](BF4)2·2H2O, 5, in which the well-ordered guest water molecules mediate the rearrangement of the tetrafluoroborate anions and the framework itself through hydrogen bonding. The dynamics of the system are examined in greater detail through the preparation of a kinetic product, the dioxane-solvated species poly-[Ag2(L)](BF4)2·2C4H8O2, 6, which undergoes a slow conversion to 5 over the course of approximately 16 h, a transition which can be monitored in real time. The reverse transformation can also be observed on immersing the hydrate 5 in dioxane. The structural features and physical properties of each of the materials can be rationalized based on the flexible and multifunctional nature of the ligand molecule, as well as the coordination behavior of the chosen metal ions.

4.
Inorg Chem ; 55(20): 10467-10474, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27665766

RESUMO

A new divergent homopiperazine-derived ligand N,N'-bis(4-carboxyphenyl)-1,4-diazacycloheptane H2L has been prepared, containing a semirigid saturated heterocyclic core which is capable of providing multiple distinct bridging geometries. Reaction of H2L with zinc acetate in DMSO gives a two-dimensional parallel interpenetrated polyrotaxane structure 1 in which the loops and rods are formed by the bent cis-(eq,ax) twist boat and trans-(ax,ax) twist chair conformers, respectively. By matching the distances between the solvated metal sites in the structure of 1, a related material 2 can be prepared incorporating the pillaring ligand trans-1,2-bis(4-pyridyl)ethylene bpe. Compound 2 displays a similar polyrotaxane interpenetration mode, permitted by the presence of both cis and trans ligand conformers, but displays a three-dimensional 2.69 topology related to the dia diamondoid network. The guest exchange and gas adsorption properties of both materials were investigated; while compound 1 displays poor stability to guest exchange and negligible gas uptake, the higher connectivity microporous compound 2 shows facile guest exchange and a surprisingly high CO2 capacity of 12 wt % at 1 bar and 273 K, and a zero-loading enthalpy of adsorption of -32 kJ mol-1. High-pressure adsorption isotherms also show moderate physisorption of H2 and CH4 within the material.

5.
ACS Appl Mater Interfaces ; 8(51): 35243-35252, 2016 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-27977114

RESUMO

Protic salts have been recently recognized to be an excellent carbon source to obtain highly ordered N-doped carbon without the need of tedious and time-consuming preparation steps that are usually involved in traditional polymer-based precursors. Herein, we report a direct co-pyrolysis of an easily synthesized protic salt (benzimidazolium triflate) with calcium and sodium citrate at 850 °C to obtain N-doped mesoporous carbons from a single calcination procedure. It was found that sodium citrate plays a role in the final carbon porosity and acts as an in situ activator. This results in a large surface area as high as 1738 m2/g with a homogeneous pore size distribution and a moderate nitrogen doping level of 3.1%. X-ray photoelectron spectroscopy (XPS) measurements revealed that graphitic and pyridinic groups are the main nitrogen species present in the material, and their content depends on the amount of sodium citrate used during pyrolysis. Transmission electron microscopy (TEM) investigation showed that sodium citrate assists the formation of graphitic domains and many carbon nanosheets were observed. When applied as supercapacitor electrodes, a specific capacitance of 111 F/g in organic electrolyte was obtained and an excellent capacitance retention of 85.9% was observed at a current density of 10 A/g. At an operating voltage of 3.0 V, the device provided a maximum energy density of 35 W h/kg and a maximum power density of 12 kW/kg.

6.
Dalton Trans ; 44(40): 17494-507, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26223788

RESUMO

The synthesis and structural, magnetic and gas adsorption properties of a series of coordination polymer materials prepared from a new, highly flexible and internally functional tetrakis-carboxybenzyl ligand H4L derived from 1,2-diaminoethane have been examined. The compound poly-[Ni3(HL)2(OH2)4]·2DMF·2H2O 1, a two-dimensional coordination polymer, contains aqua- and carboxylato-bridged trinuclear Ni(II) clusters, the magnetic behaviour of which can be well described through experimental fitting and ab initio modelling to a ferromagnetically coupled trimer with a positive axial zero-field splitting parameter D. Compound poly-[Zn2L]·2DMF·3H2O 2, a three-dimensional coordination polymer displaying frl topology, contains large and well-defined solvent channels, which are shown to collapse on solvent exchange or drying. Compound poly-[Zn2(L)(DMSO)4]·3DMSO·3H2O 3, a highly solvated two-dimensional coordination polymer, displayed poor stability characteristics, however a structurally related material poly-[Zn2(L)(bpe)(DMSO)2]·DMSO·3H2O 4 was prepared under similar synthetic conditions by including the 1,2-bis(4-pyridyl)ethylene bpe co-ligand. Compound 4, containing small one-dimensional solvent channels, shows excellent structural resilience to solvent exchange and evacuation, and the evacuated material displays selective adsorption of CO2 over N2 at 273 K in the pressure range 0-1 atm. Each of the coordination polymers displays subtle differences in the conformation and binding mode of the ligand species, with switching between two distinct conformers (X-shaped and H-shaped), as well as a variable protonation state of the central core, with significant effects on the resulting network structures and physical properties of the materials.

7.
Chem Commun (Camb) ; 50(28): 3735-7, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24577745

RESUMO

Polymorphic metal-organic framework (MOF) materials offer a platform for small-scale separation of complex mixtures of polycyclic aromatic hydrocarbons (PAHs) and polar compounds. Retention factors show dependence on both analyte dimensions and polarity, suggesting mixed-mode separation, allowing complete resolution of some analytes from multi-component mixtures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA