Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(23): e2121469119, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35658077

RESUMO

Recent studies have revealed a surprising diversity of sex chromosomes in vertebrates. However, the detailed mechanism of their turnover is still elusive. To understand this process, it is necessary to compare closely related species in terms of sex-determining genes and the chromosomes harboring them. Here, we explored the genus Takifugu, in which one strong candidate sex-determining gene, Amhr2, has been identified. To trace the processes involved in transitions in the sex-determination system in this genus, we studied 12 species and found that while the Amhr2 locus likely determines sex in the majority of Takifugu species, three species have acquired sex-determining loci at different chromosomal locations. Nevertheless, the generation of genome assemblies for the three species revealed that they share a portion of the male-specific supergene that contains a candidate sex-determining gene, GsdfY, along with genes that potentially play a role in male fitness. The shared supergene spans ∼100 kb and is flanked by two duplicated regions characterized by CACTA transposable elements. These results suggest that the shared supergene has taken over the role of sex-determining locus from Amhr2 in lineages leading to the three species, and repeated translocations of the supergene underlie the turnover of sex chromosomes in these lineages. These findings highlight the underestimated role of a mobile supergene in the turnover of sex chromosomes in vertebrates.


Assuntos
Processos de Determinação Sexual , Takifugu , Animais , Elementos de DNA Transponíveis/genética , Evolução Molecular , Cromossomos Sexuais/genética , Processos de Determinação Sexual/genética , Takifugu/genética , Translocação Genética
2.
Development ; 147(4)2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32001439

RESUMO

Primordial germ cells (PGCs), the founder cells of the germline, are specified in pre-gastrulating embryos in mammals, and subsequently migrate towards gonads to mature into functional gametes. Here, we investigated PGC development in rats, by genetically modifying Prdm14, a unique marker and an essential PGC transcriptional regulator. We trace PGC development in rats, for the first time, from specification until the sex determination stage in fetal gonads using Prdm14 H2BVenus knock-in rats. We uncover that the crucial role of Prdm14 in PGC specification is conserved between rat and mice, by analyzing Prdm14-deficient rat embryos. Notably, loss of Prdm14 completely abrogates the PGC program, as demonstrated by failure of the maintenance and/or activation of germ cell markers and pluripotency genes. Finally, we profile the transcriptome of the post-implantation epiblast and all PGC stages in rat to reveal enrichment of distinct gene sets at each transition point, thereby providing an accurate transcriptional timeline for rat PGC development. Thus, the novel genetically modified rats and data sets obtained in this study will advance our knowledge on conserved versus species-specific features for germline development in mammals.


Assuntos
Proteínas de Ligação a DNA/genética , Células Germinativas/citologia , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética , Animais , Cruzamentos Genéticos , Proteínas de Ligação a DNA/fisiologia , Feminino , Gástrula/fisiologia , Deleção de Genes , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Heterozigoto , Masculino , Camundongos , Proteínas de Ligação a RNA/fisiologia , Ratos , Processos de Determinação Sexual , Fatores de Transcrição/fisiologia , Transcrição Gênica
3.
EMBO Rep ; 22(2): e51524, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33399271

RESUMO

Advanced paternal age can have deleterious effects on various traits in the next generation. Here, we establish a paternal-aging model in mice to understand the molecular mechanisms of transgenerational epigenetics. Whole-genome target DNA methylome analyses of sperm from aged mice reveal more hypo-methylated genomic regions enriched in REST/NRSF binding motifs. Gene set enrichment analyses also reveal the upregulation of REST/NRSF target genes in the forebrain of embryos from aged fathers. Offspring derived from young mice administrated with a DNA de-methylation drug phenocopy the abnormal vocal communication of pups derived from aged fathers. In conclusion, hypo-methylation of sperm DNA can be a key molecular feature modulating neurodevelopmental programs in offspring by causing fluctuations in the expression of REST/NRSF target genes.


Assuntos
Metilação de DNA , Idade Paterna , Animais , Epigênese Genética , Pai , Humanos , Masculino , Camundongos , Espermatozoides/metabolismo
4.
FASEB J ; 35(10): e21904, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34569650

RESUMO

Blastocyst formation gives rise to the inner cell mass (ICM) and trophectoderm (TE) and is followed by the differentiation of the epiblast (Epi) and primitive endoderm (PrE) within the ICM. Although these two-round cell lineage differentiations underpin proper embryogenesis in every mammal, their spatiotemporal dynamics are quite diverse among species. Here, molecular details of the blastocyst stage in cattle were dissected using an optimized in vitro culture method. Blastocyst embryos were placed on agarose gel filled with nutrient-rich media to expose embryos to both gaseous and liquid phases. Embryos derived from this "on-gel" culture were transferred to surrogate mothers on day (D) 10 after fertilization and successfully implanted. Immunofluorescent studies using on-gel-cultured embryos revealed that the proportion of TE cells expressing the pluripotent ICM marker, OCT4, which was beyond 80% on D8, was rapidly reduced after D9 and reached 0% on D9.5. This first lineage segregation process was temporally parallel with the second one, identified by the spatial separation of Epi cells expressing SOX2 and PrE cells expressing SOX17. RNA-seq comparison of TE cells from D8 in vitro fertilized embryos and D14 in vivo embryos revealed that besides drastic reduction of pluripotency-related genes, TE cells highly expressed Wnt, FGF, and VEGF signaling pathways-related genes to facilitate the functional maturation required for feto-maternal interaction. Quantitative PCR analysis of TE cells derived from on-gel culture further confirmed time-dependent increments in the expression of key TE markers. Altogether, the present study provides platforms to understand species-specific strategies for mammalian preimplantation development.


Assuntos
Antígenos de Diferenciação/biossíntese , Blastocisto/metabolismo , Linhagem da Célula , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Animais , Bovinos
5.
J Clin Immunol ; 41(5): 967-974, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33544357

RESUMO

PURPOSE: STING-associated vasculopathy with onset in infancy (SAVI) is a type-I interferonopathy, characterized by systemic inflammation, peripheral vascular inflammation, and pulmonary manifestations. There are three reports of SAVI patients developing liver disease, but no report of a SAVI patient requiring liver transplantation. Therefore, the relevance of liver inflammation is unclear in SAVI. We report a SAVI patient who developed severe liver disorder following liver transplantation. METHODS: SAVI was diagnosed in a 4-year-old girl based on genetic analysis by whole-exome sequencing. We demonstrated clinical features, laboratory findings, and pathological examination of her original and transplanted livers. RESULTS: At 2 months of age, she developed bronchitis showing resistance to bronchodilators and antibiotics. At 10 months of age, she developed liver dysfunction with atypical cholangitis, which required liver transplantation at 1 year of age. At 2 years of age, multiple biliary cysts developed in the transplanted liver. At 3.9 years of age, SAVI was diagnosed by whole-exome sequencing. Inflammatory cells from the liver invaded the stomach wall directly, leading to fatal gastrointestinal bleeding unexpectedly at 4.6 years of age. In pathological findings, there were no typical findings of liver abscess, vasculitis, or graft rejection, but biliary cysts and infiltration of inflammatory cells, including plasmacytes around the bile duct area, in the transplanted liver were noted, which were findings similar to those of her original liver. CONCLUSION: Although further studies to clarify the mechanisms of the various liver disorders described in SAVI patients are needed, inflammatory liver manifestations may be amplified in the context of SAVI.


Assuntos
Hepatopatias/terapia , Transplante de Fígado/efeitos adversos , Proteínas de Membrana/genética , Doenças Vasculares/terapia , Pré-Escolar , Feminino , Mutação com Ganho de Função , Humanos , Fígado/patologia , Hepatopatias/genética , Hepatopatias/patologia , Doenças Vasculares/genética , Doenças Vasculares/patologia
6.
Biochem Biophys Res Commun ; 569: 179-186, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34252590

RESUMO

An early and accurate pregnancy diagnosis method is required to improve the reproductive performance of cows. Here we developed an easy pregnancy detection method using vaginal mucosal membrane (VMM) with application of Reverse Transcription-Loop-mediated Isothermal Amplification (RT-LAMP) and machine learning. Cows underwent artificial insemination (AI) on day 0, followed by VMM-collection on day 17-18, and pregnancy diagnosis by ultrasonography on day 30. By RNA sequencing of VMM samples, three candidate genes for pregnancy markers (ISG15 and IFIT1: up-regulated, MUC16: down-regulated) were selected. Using these genes, we performed RT-LAMP and calculated the rise-up time (RUT), the first-time absorbance exceeded 0.05 in the reaction. We next determined the cutoff value and calculated accuracy, sensitivity, specificity, positive prediction value (PPV), and negative prediction value (NPV) for each marker evaluation. The IFIT1 scored the best performance at 92.5% sensitivity, but specificity was 77.5%, suggesting that it is difficult to eliminate false positives. We then developed a machine learning model trained with RUT of each marker combination to predict pregnancy. The model created with the RUT of IFIT1 and MUC16 combination showed high specificity (86.7%) and sensitivity (93.3%), which were higher compared to IFIT1 alone. In conclusion, using VMM with RT-LAMP and machine learning algorithm can be used for early pregnancy detection before the return of first estrus.


Assuntos
Expressão Gênica , Aprendizado de Máquina , Técnicas de Diagnóstico Molecular/métodos , Mucosa/metabolismo , Técnicas de Amplificação de Ácido Nucleico/métodos , Gravidez/genética , Vagina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Biomarcadores/metabolismo , Antígeno Ca-125/genética , Bovinos , Citocinas/genética , Feminino , Proteínas de Membrana/genética , Proteínas de Ligação a RNA/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Ubiquitinas/genética
7.
Development ; 145(23)2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30446626

RESUMO

In mouse embryos, primordial germ cells (PGCs) are fate-determined from epiblast cells. Signaling pathways involved in PGC formation have been identified, but their epigenetic mechanisms remain poorly understood. Here, we show that the histone methyltransferase SETDB1 is an epigenetic regulator of PGC fate determination. Setdb1-deficient embryos exhibit drastic reduction of nascent PGCs. Dppa2, Otx2 and Utf1 are de-repressed whereas mesoderm development-related genes, including BMP4 signaling-related genes, are downregulated by Setdb1 knockdown during PGC-like cell (PGCLC) induction. In addition, binding of SETDB1 is observed at the flanking regions of Dppa2, Otx2 and Utf1 in cell aggregates containing PGCLCs, and trimethylation of lysine 9 of histone H3 is reduced by Setdb1 knockdown at those regions. Furthermore, DPPA2, OTX2 and UTF1 binding is increased in genes encoding BMP4 signaling-related proteins, including SMAD1. Finally, overexpression of Dppa2, Otx2 and Utf1 in cell aggregates containing PGCLCs results in the repression of BMP4 signaling-related genes and PGC determinant genes. We propose that the localization of SETDB1 to Dppa2, Otx2 and Utf1, and subsequent repression of their expression, are crucial for PGC determination by ensuring BMP4 signaling.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Linhagem da Célula , Células Germinativas/citologia , Células Germinativas/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Transdução de Sinais , Animais , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos , Fatores de Transcrição/metabolismo , Regulação para Cima/genética
8.
BMC Pulm Med ; 21(1): 62, 2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33618696

RESUMO

BACKGROUND: The most important target cell of SARS-CoV-2 is Type II pneumocyte which produces and secretes pulmonary surfactant (PS) that prevents alveolar collapse. PS instillation therapy is dramatically effective for infant respiratory distress syndrome but has been clinically ineffective for ARDS. Nowadays, ARDS is regarded as non-cardiogenic pulmonary edema with vascular hyper-permeability regardless of direct relation to PS dysfunction. However, there is a possibility that this ineffectiveness of PS instillation for ARDS is caused by insufficient delivery. Then, we performed PS instillation simulation with realistic human airway models by the use of computational fluid dynamics, and investigated how instilled PS would move in the liquid layer covering the airway wall and reach to alveolar regions. METHODS: Two types of 3D human airway models were prepared: one was from the trachea to the lobular bronchi and the other was from a subsegmental bronchus to respiratory bronchioles. The thickness of the liquid layer covering the airway was assigned as 14 % of the inner radius of the airway segment. The liquid layer was assumed to be replaced by an instilled PS. The flow rate of the instilled PS was assigned a constant value, which was determined by the total amount and instillation time in clinical use. The PS concentration of the liquid layer during instillation was computed by solving the advective-diffusion equation. RESULTS: The driving pressure from the trachea to respiratory bronchioles was calculated at 317 cmH2O, which is about 20 times of a standard value in conventional PS instillation method where the driving pressure was given by difference between inspiratory and end-expiratory pressures of a ventilator. It means that almost all PS does not reach the alveolar regions but moves to and fro within the airway according to the change in ventilator pressure. The driving pressure from subsegmental bronchus was calculated at 273 cm H2O, that is clinically possible by wedge instillation under bronchoscopic observation. CONCLUSIONS: The simulation study has revealed that selective wedge instillation under bronchoscopic observation should be tried for COVID-19 pneumonia before the onset of ARDS. It will be also useful for preventing secondary lung fibrosis.


Assuntos
Brônquios/fisiologia , Bronquíolos/fisiologia , Tratamento Farmacológico da COVID-19 , Simulação por Computador , Hidrodinâmica , Pressão , Surfactantes Pulmonares/administração & dosagem , Traqueia/fisiologia , Broncoscopia , Humanos , Instilação de Medicamentos , Respiração Artificial , SARS-CoV-2
11.
Plant Cell Physiol ; 58(2): 375-384, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28013279

RESUMO

A transposition of a heat-activated retrotransposon named ONSEN required compromise of a small RNA-mediated epigenetic regulation that includes RNA-directed DNA methylation (RdDM) machinery after heat treatment. In the current study, we analyzed the transcriptional and transpositional activation of ONSEN to better understand the underlying molecular mechanism involved in the maintenance and/or induction of transposon activation in plant tissue culture. We found the transposition of heat-primed ONSEN during tissue culture independently of RdDM mutation. The heat activation of ONSEN transcripts was not significantly up-regulated in tissue culture compared with that in heat-stressed seedlings, indicating that the transposition of ONSEN was regulated independently of the transcript level. RdDM-related genes were up-regulated by heat stress in both tissue culture and seedlings. The level of DNA methylation of ONSEN did not show any change in tissue culture, and the amount of ONSEN-derived small RNAs was not affected by heat stress. The results indicated that the transposition of ONSEN was regulated by an alternative mechanism in addition to the RdDM-mediated epigenetic regulation in tissue culture. We applied the tissue culture-induced transposition of ONSEN to Japanese radish, an important breeding species of the family Brassicaceae. Several new insertions were detected in a regenerated plant derived from heat-stressed tissues and its self-fertilized progeny, revealing the possibility of molecular breeding without genetic modification.


Assuntos
Retroelementos/genética , Brassicaceae/genética , Brassicaceae/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Temperatura Alta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Técnicas de Cultura de Tecidos
12.
Genes Cells ; 21(11): 1209-1222, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27696608

RESUMO

Whole-genome shotgun bisulfite sequencing (WG-SBS) is currently the most powerful tool available for understanding genomewide cytosine methylation with single-base resolution; however, the high sequencing cost limits its widespread application, particularly for mammalian genomes. We mapped high- to low-coverage SBS short reads of mouse and human female developing germ cells to consensus sequences of repetitive elements that were multiplied in the respective host genome. This mapping strategy effectively identified active and evolutionarily young retrotransposon subfamilies and centromeric satellite repeats that were resistant to DNA demethylation during the investigated progressive stages of germ cell development. Notably, quantities of only tens of thousands of uniquely mapped reads provided sufficient sensitivity to allow for methylation analyses of multiple retrotransposons and satellite repeats in mice. Furthermore, we produced SBS results from single female murine germ cells by an improved multiplexing and amplification-free SBS method (scPBAT). The scPBAT results quantitatively provided ≥5× sequencing coverage for at least 30 repeats, and the individual methylation patterns detected were similar to the bulk cell-based results. Our single-cell methylome sequencing technique will allow researchers to investigate intergenic methylation characteristics from limited amounts of mammalian cells as well as cells from other organisms with genomic annotations.


Assuntos
Metilação de DNA , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA/métodos , Animais , Mapeamento Cromossômico , Feminino , Biblioteca Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Óvulo/citologia , Sulfitos
13.
Acta Neuropathol ; 133(3): 445-462, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28078450

RESUMO

Intracranial germ cell tumors (iGCTs) are the second most common brain tumors among children under 14 in Japan. The World Health Organization classification recognizes several subtypes of iGCTs, which are conventionally subclassified into pure germinoma or non-germinomatous GCTs. Recent exhaustive genomic studies showed that mutations of the genes involved in the MAPK and/or PI3K pathways are common in iGCTs; however, the mechanisms of how different subtypes develop, often as a mixed-GCT, are unknown. To elucidate the pathogenesis of iGCTs, we investigated 61 GCTs of various subtypes by genome-wide DNA methylation profiling. We showed that pure germinomas are characterized by global low DNA methylation, a unique epigenetic feature making them distinct from all other iGCTs subtypes. The patterns of methylation strongly resemble that of primordial germ cells (PGC) at the migration phase, possibly indicating the cell of origin for these tumors. Unlike PGC, however, hypomethylation extends to long interspersed nuclear element retrotransposons. Histologically and epigenetically distinct microdissected components of mixed-GCTs shared identical somatic mutations in the MAPK or PI3K pathways, indicating that they developed from a common ancestral cell.


Assuntos
Neoplasias Encefálicas/genética , Germinoma/genética , Transdução de Sinais/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Instabilidade Cromossômica/genética , Metilação de DNA , Análise Mutacional de DNA , Feminino , Células Germinativas , Humanos , Lactente , Japão , Elementos Nucleotídeos Longos e Dispersos/genética , Masculino , Pessoa de Meia-Idade , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Mutação , Fosfatidilinositol 3-Quinases/genética , RNA Mensageiro/metabolismo , Estatísticas não Paramétricas , Adulto Jovem
14.
Genome Res ; 23(4): 616-27, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23410886

RESUMO

Dynamic epigenetic reprogramming occurs during mammalian germ cell development, although the targets of this process, including DNA demethylation and de novo methylation, remain poorly understood. We performed genome-wide DNA methylation analysis in male and female mouse primordial germ cells at embryonic days 10.5, 13.5, and 16.5 by whole-genome shotgun bisulfite sequencing. Our high-resolution DNA methylome maps demonstrated gender-specific differences in CpG methylation at genome-wide and gene-specific levels during fetal germline progression. There was extensive intra- and intergenic hypomethylation with erasure of methylation marks at imprinted, X-linked, or germline-specific genes during gonadal sex determination and partial methylation at particular retrotransposons. Following global demethylation and sex determination, CpG sites switched to de novo methylation in males, but the X-linked genes appeared resistant to the wave of de novo methylation. Significant differential methylation at a subset of imprinted loci was identified in both genders, and non-CpG methylation occurred only in male gonocytes. Our data establish the basis for future studies on the role of epigenetic modifications in germline development and other biological processes.


Assuntos
Metilação de DNA , Epigênese Genética , Células Germinativas/metabolismo , Animais , Análise por Conglomerados , Ilhas de CpG , Epigenômica/métodos , Feminino , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Masculino , Camundongos , Fatores Sexuais
15.
Biol Reprod ; 94(6): 128, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27103445

RESUMO

The germ line reprogramming barrier resets parental epigenetic modifications according to sex, conferring totipotency to mammalian embryos upon fertilization. However, it is not known whether epigenetic errors are committed during germ line reprogramming that are then transmitted to germ cells, and consequently to offspring. We addressed this question in the present study by performing a genome-wide DNA methylation analysis using a target postbisulfite sequencing method in order to identify DNA methylation errors in cloned mouse sperm. The sperm genomes of two somatic cell-cloned mice (CL1 and CL7) contained significantly higher numbers of differentially methylated CpG sites (P = 0.0045 and P = 0.0116). As a result, they had higher numbers of differentially methylated CpG islands. However, there was no evidence that these sites were transmitted to the sperm genome of offspring. These results suggest that DNA methylation errors resulting from embryo cloning are transmitted to the sperm genome by evading the germ line reprogramming barrier.


Assuntos
Clonagem de Organismos , Metilação de DNA , Epigênese Genética , Espermatozoides/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA
16.
Reproduction ; 152(5): 417-30, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27495230

RESUMO

Spatiotemporal expression of transcription factors is crucial for genomic reprogramming. Pou5f1 (Oct4) is an essential transcription factor for reprogramming. A recent study reported that OCT4A, which is crucial for establishment and maintenance of pluripotent cells, is expressed in oocytes, but maternal OCT4A is dispensable for totipotency induction. Whereas another study reported that OCT4B, which is not related to pluripotency, is predominantly expressed instead of OCT4A during early preimplantation phases in mice. To determine the expression states of OCT4 in murine preimplantation embryos, we conducted in-depth expression and functional analyses. We found that pluripotency-related OCT4 mainly localizes to the cytoplasm in early preimplantation phases, with no major nuclear localization until the 8-16-cell stage despite high expression in both oocytes and early embryos. RNA-sequencing analysis using oocytes and early preimplantation embryos could not identify the splice variants creating alternative forms of OCT4 protein. Forced expression of OCT4 in zygotes by the injection of polyadenylated mRNA clearly showed nuclear localization of OCT4 protein around 3-5-fold greater than physiological levels and impaired developmental competency in a dose-dependent manner. Embryos with modest overexpression of OCT4 could develop to the 16-cell stage; however, more than 50% of the embryos were arrested at this stage, similar to the results for OCT4 depletion. In contrast, extensive overexpression of OCT4 resulted in complete arrest at the 2-cell stage accompanied by downregulation of zygotically activated genes and repetitive elements related to the totipotent state. These results demonstrated that OCT4 protein localization was spatiotemporally altered during preimplantation development, and strict control of Oct4 protein levels was essential for proper totipotential reprogramming.


Assuntos
Blastocisto/citologia , Embrião de Mamíferos/citologia , Desenvolvimento Embrionário/genética , Células-Tronco Embrionárias/citologia , Fator 3 de Transcrição de Octâmero/metabolismo , Animais , Blastocisto/metabolismo , Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Fator 3 de Transcrição de Octâmero/genética , Oócitos/citologia , Oócitos/metabolismo , Gravidez , Análise Espaço-Temporal
17.
PLoS Genet ; 9(4): e1003439, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23637617

RESUMO

DNA methylation is an epigenetic modification that plays a crucial role in normal mammalian development, retrotransposon silencing, and cellular reprogramming. Although methylation mainly occurs on the cytosine in a CG site, non-CG methylation is prevalent in pluripotent stem cells, brain, and oocytes. We previously identified non-CG methylation in several CG-rich regions in mouse germinal vesicle oocytes (GVOs), but the overall distribution of non-CG methylation and the enzymes responsible for this modification are unknown. Using amplification-free whole-genome bisulfite sequencing, which can be used with minute amounts of DNA, we constructed the base-resolution methylome maps of GVOs, non-growing oocytes (NGOs), and mutant GVOs lacking the DNA methyltransferase Dnmt1, Dnmt3a, Dnmt3b, or Dnmt3L. We found that nearly two-thirds of all methylcytosines occur in a non-CG context in GVOs. The distribution of non-CG methylation closely resembled that of CG methylation throughout the genome and showed clear enrichment in gene bodies. Compared to NGOs, GVOs were over four times more methylated at non-CG sites, indicating that non-CG methylation accumulates during oocyte growth. Lack of Dnmt3a or Dnmt3L resulted in a global reduction in both CG and non-CG methylation, showing that non-CG methylation depends on the Dnmt3a-Dnmt3L complex. Dnmt3b was dispensable. Of note, lack of Dnmt1 resulted in a slight decrease in CG methylation, suggesting that this maintenance enzyme plays a role in non-dividing oocytes. Dnmt1 may act on CG sites that remain hemimethylated in the de novo methylation process. Our results provide a basis for understanding the mechanisms and significance of non-CG methylation in mammalian oocytes.


Assuntos
Metilação de DNA , Oócitos , Animais , Ilhas de CpG , DNA/metabolismo , Genoma , Camundongos , Oócitos/metabolismo , Oogênese/genética
18.
BMC Genomics ; 16: 624, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26290333

RESUMO

BACKGROUND: In the male germline, neonatal prospermatogonia give rise to spermatogonia, which include stem cell population (undifferentiated spermatogonia) that supports continuous spermatogenesis in adults. Although the levels of DNA methyltransferases change dynamically in the neonatal and early postnatal male germ cells, detailed genome-wide DNA methylation profiles of these cells during the stem cell formation and differentiation have not been reported. RESULTS: To understand the regulation of spermatogonial stem cell formation and differentiation, we examined the DNA methylation and gene expression dynamics of male mouse germ cells at the critical stages: neonatal prospermatogonia, and early postntal (day 7) undifferentiated and differentiating spermatogonia. We found large partially methylated domains similar to those found in cancer cells and placenta in all these germ cells, and high levels of non-CG methylation and 5-hydroxymethylcytosines in neonatal prospermatogonia. Although the global CG methylation levels were stable in early postnatal male germ cells, and despite the reported scarcity of differential methylation in the adult spermatogonial stem cells, we identified many regions showing stage-specific differential methylation in and around genes important for stem cell function and spermatogenesis. These regions contained binding sites for specific transcription factors including the SOX family members. CONCLUSIONS: Our findings show a distinctive and dynamic regulation of DNA methylation during spermatogonial stem cell formation and differentiation in the neonatal and early postnatal testes. Furthermore, we revealed a unique accumulation and distribution of non-CG methylation and 5hmC marks in neonatal prospermatogonia. These findings contrast with the reported scarcity of differential methylation in adult spermatogonial stem cell differentiation and represent a unique phase of male germ cell development.


Assuntos
Metilação de DNA , Perfilação da Expressão Gênica/métodos , Espermatogônias/citologia , Células-Tronco/fisiologia , Animais , Animais Recém-Nascidos , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Espermatogênese , Espermatogônias/fisiologia
19.
Genes Cells ; 19(8): 629-36, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24995522

RESUMO

Recent studies of the demethylation process in murine zygotes have shown that 5-methylcytosine (5mC) is first converted into 5-hydroxymethylcytosine (5hmC) or further-oxidized cytosines in the paternal genome by the maternal ten-eleven translocation 3 (TET3) enzyme. This process is crucial for normal embryogenesis, and our aim was to elucidate the effect of Tet3 on the maternal genome during female germ-line development. Immunofluorescence analysis showed that 5hmC was clearly present in fully grown oocytes but not in nongrowing and early growth-stage oocytes. The 5hmC in the maternal genome was clearly detectable in DNA methyltransferase 3-like enzyme (Dnmt3L)-null oocytes and their fertilized zygotes, although Dnmt3L is essential for DNA methylation in oocytes. An analysis using an enzyme digestion-based method showed that 5hmC was present in LTR retrotransposons from the late growth period of oocytes. Quantitative RT-PCR analysis showed that Tet3 expression was enhanced during oocyte growth and exhibited an approximately 40-fold increase between nongrowing and fully grown oocytes. Our results show that 5hmC is generated since the oocyte growth stage, accompanied by up-regulation of Tet3; 5hmC is located mainly in LTR retrotransposons, indicating that 5hmC generated in growth-stage oocytes is responsible for genomewide demethylation after fertilization.


Assuntos
Citosina/análogos & derivados , Oócitos/crescimento & desenvolvimento , 5-Metilcitosina/análogos & derivados , Animais , Citosina/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Feminino , Genoma , Camundongos Endogâmicos C57BL , Oócitos/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Zigoto/metabolismo
20.
PLoS Genet ; 8(1): e1002440, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22242016

RESUMO

Genome-wide dynamic changes in DNA methylation are indispensable for germline development and genomic imprinting in mammals. Here, we report single-base resolution DNA methylome and transcriptome maps of mouse germ cells, generated using whole-genome shotgun bisulfite sequencing and cDNA sequencing (mRNA-seq). Oocyte genomes showed a significant positive correlation between mRNA transcript levels and methylation of the transcribed region. Sperm genomes had nearly complete coverage of methylation, except in the CpG-rich regions, and showed a significant negative correlation between gene expression and promoter methylation. Thus, these methylome maps revealed that oocytes and sperms are widely different in the extent and distribution of DNA methylation. Furthermore, a comparison of oocyte and sperm methylomes identified more than 1,600 CpG islands differentially methylated in oocytes and sperm (germline differentially methylated regions, gDMRs), in addition to the known imprinting control regions (ICRs). About half of these differentially methylated DNA sequences appear to be at least partially resistant to the global DNA demethylation that occurs during preimplantation development. In the absence of Dnmt3L, neither methylation of most oocyte-methylated gDMRs nor intragenic methylation was observed. There was also genome-wide hypomethylation, and partial methylation at particular retrotransposons, while maintaining global gene expression, in oocytes. Along with the identification of the many Dnmt3L-dependent gDMRs at intragenic regions, the present results suggest that oocyte methylation can be divided into 2 types: Dnmt3L-dependent methylation, which is required for maternal methylation imprinting, and Dnmt3L-independent methylation, which might be essential for endogenous retroviral DNA silencing. The present data provide entirely new perspectives on the evaluation of epigenetic markers in germline cells.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA , Epigênese Genética , Impressão Genômica , Células Germinativas/metabolismo , Oócitos/metabolismo , Espermatozoides/metabolismo , Animais , Blastocisto/metabolismo , Ilhas de CpG/genética , DNA Complementar , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Estudo de Associação Genômica Ampla , Células Germinativas/crescimento & desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA