Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Biol Chem ; : 107647, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39122010

RESUMO

Curcumin is a plant-derived secondary metabolite exhibiting antitumor, neuroprotective, anti-diabetic activities, and so on. We previously isolated Escherichia coli as an enterobacterium exhibiting curcumin-converting activity from human feces, and discovered an enzyme showing this activity (CurA) and named it NADPH-dependent curcumin/dihydrocurcumin reductase. From soil, here, we isolated a curcumin-degrading microorganism (No. 34) using the screening medium containing curcumin as the sole carbon source and identified as Rhodococcus sp. A curcumin-degrading enzyme designated as CurH was purified from this strain and characterized, and compared with CurA. CurH catalyzed hydrolytic cleavage of a carbon-carbon bond in the ß-diketone moiety of curcumin and its analogs, yielding two products bearing a methyl ketone terminus and a carboxylic acid terminus, respectively. These findings demonstrated that a curcumin degradation reaction catalyzed by CurH in the soil environment was completely different from the one catalyzed by CurA in the human microbiome. Of all the curcumin analogs tested, suitable substrates for the enzyme were curcuminoids (i.e., curcumin and bisdemethoxycurcumin) and tetrahydrocurcuminoids. Thus, we named this enzyme curcuminoid hydrolase. The deduced amino acid sequence of curH exhibited similarity to those of members of acetyl-CoA C-acetyltransferase family. Considering results of oxygen isotope analyses and a series of site-directed mutagenesis experiments on our enzyme, we propose a possible catalytic mechanism of CurH, which is unique and distinct from those of enzymes degrading ß-diketone moieties such as ß-diketone hydrolases known so far.

2.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34583991

RESUMO

C-glycosides have a unique structure, in which an anomeric carbon of a sugar is directly bonded to the carbon of an aglycone skeleton. One of the natural C-glycosides, carminic acid, is utilized by the food, cosmetic, and pharmaceutical industries, for a total of more than 200 tons/y worldwide. However, a metabolic pathway of carminic acid has never been identified. In this study, we isolated the previously unknown carminic acid-catabolizing microorganism and discovered a flavoenzyme "C-glycoside 3-oxidase" named CarA that catalyzes oxidation of the sugar moiety of carminic acid. A Basic Local Alignment Search Tool (BLAST) search demonstrated that CarA homologs were distributed in soil microorganisms but not intestinal ones. In addition to CarA, two CarA homologs were cloned and heterologously expressed, and their biochemical properties were determined. Furthermore, a crystal structure of one homolog was determined. Together with the biochemical analysis, the crystal structure and a mutagenesis analysis of CarA revealed the mechanisms underlying their substrate specificity and catalytic reaction. Our study suggests that CarA and its homologs play a crucial role in the metabolism of C-glycosides in nature.


Assuntos
Flavina-Adenina Dinucleotídeo/metabolismo , Glicosídeos/metabolismo , Microbacterium/metabolismo , Glicosídeos Cardíacos/metabolismo , Carmim/metabolismo , Catálise , Redes e Vias Metabólicas/fisiologia , Mutagênese/fisiologia , Oxirredutases/metabolismo , Especificidade por Substrato
3.
Appl Environ Microbiol ; 89(11): e0114523, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37874289

RESUMO

IMPORTANCE: Pepper is a spice that has been used worldwide since the Age of Discovery. The substance that is responsible for the spiciness in pepper is piperine, a type of alkaloid. It has never been reported how piperine is degraded by microorganisms. In this study, we discovered a bacterium in the soil that is capable of catabolizing piperine as its sole nitrogen source. Furthermore, we discovered the enzyme involved in piperine metabolism. This enzyme decomposed the methylenedioxyphenyl group, which is the common structure in various plant-derived bioactive compounds such as sesamin, piperonal, safrole, and berberin. By utilizing this enzyme, piperine can be converted into a useful antioxidant compound. The findings about previously unknown metabolic pathways in nature can lead to the discovery of new enzymes and provide methods for the enzymatic synthesis of useful compounds.


Assuntos
Actinobacteria , Alcaloides , Alcamidas Poli-Insaturadas/química , Piperidinas/química
4.
Biotechnol Bioeng ; 116(3): 481-489, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30418672

RESUMO

The transition metal (iron or cobalt) is a mandatory part that constitutes the catalytic center of nitrile hydratase (NHase). The incorporation of the cobalt ion into cobalt-containing NHase (Co-NHase) was reported to depend on self-subunit swapping and the activator of the Co-NHase acts as a self-subunit swapping chaperone for subunit exchange. Here we discovered that the activator acting as a metallochaperone transferred the cobalt ion into subunit-fused Co-NHase. We successfully isolated two activators, P14K and NhlE, which were the activators of NHases from Pseudomonas putida NRRL-18668 and the activator of low-molecular-mass NHase from Rhodococcus rhodochrous J1, respectively. Cobalt content determination demonstrated that NhlE and P14K were two cobalt-containing proteins. Substitution of the amino acids involved in the C-terminus of the activators affected the activity of the two NHases, indicating that the potential cobalt-binding sites might be located at the flexible C-terminal region. The cobalt-free NHases could be activated by either of the two activators, and both the two activators activated their cognate NHase more efficiently than did the noncognate ones. This study provided insights into the maturation of subunit-fused NHases and confirmed the metallochaperone function of the self-subunit swapping chaperone.


Assuntos
Cobalto , Hidroliases , Metalochaperonas , Subunidades Proteicas , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cobalto/química , Cobalto/metabolismo , Hidroliases/química , Hidroliases/metabolismo , Metalochaperonas/química , Metalochaperonas/metabolismo , Modelos Moleculares , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
5.
Proc Natl Acad Sci U S A ; 113(32): 9087-92, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27444012

RESUMO

Sesamin is one of the major lignans found in sesame oil. Although some microbial metabolites of sesamin have been identified, sesamin-metabolic pathways remain uncharacterized at both the enzyme and gene levels. Here, we isolated microorganisms growing on sesamin as a sole-carbon source. One microorganism showing significant sesamin-degrading activity was identified as Sinomonas sp. no. 22. A sesamin-metabolizing enzyme named SesA was purified from this strain and characterized. SesA catalyzed methylene group transfer from sesamin or sesamin monocatechol to tetrahydrofolate (THF) with ring cleavage, yielding sesamin mono- or di-catechol and 5,10-methylenetetrahydrofolate. The kinetic parameters of SesA were determined to be as follows: Km for sesamin = 0.032 ± 0.005 mM, Vmax = 9.3 ± 0.4 (µmol⋅min(-1)⋅mg(-1)), and kcat = 7.9 ± 0.3 s(-1) Next, we investigated the substrate specificity. SesA also showed enzymatic activity toward (+)-episesamin, (-)-asarinin, sesaminol, (+)-sesamolin, and piperine. Growth studies with strain no. 22, and Western blot analysis revealed that SesA formation is inducible by sesamin. The deduced amino acid sequence of sesA exhibited weak overall sequence similarity to that of the protein family of glycine cleavage T-proteins (GcvTs), which catalyze glycine degradation in most bacteria, archaea, and all eukaryotes. Only SesA catalyzes C1 transfer to THF with ring cleavage reaction among GcvT family proteins. Moreover, SesA homolog genes are found in both Gram-positive and Gram-negative bacteria. Our findings provide new insights into microbial sesamin metabolism and the function of GcvT family proteins.


Assuntos
Dioxóis/metabolismo , Lignanas/metabolismo , Micrococcaceae/metabolismo , Cinética , Micrococcaceae/isolamento & purificação , Mutação , Microbiologia do Solo , Especificidade por Substrato
6.
Biotechnol Bioeng ; 115(3): 524-535, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29080350

RESUMO

Optically pure compounds are important in the synthesis of fine chemicals. Using directed evolution of enzymes to obtain biocatalysts that can selectively produce high-value chiral chemicals is often time-, money-, and resource-intensive; traditional semi-rational designs based on structural data and docking experiments are still limited due to the lack of accurate selection of hot-spot residues. In this study, through ligand-protein collision counts based on steered molecular dynamics simulation, we accurately identified four residues related to improving nitrile hydratase stereoselectivity toward rac-mandelonitrile (MAN). All the four selected residues had numerous collisions with rac-MAN. Five mutants significantly shifting stereoselectivity towards (S)-MAN were obtained from site-saturation mutagenesis, one of them, at position ßPhe37, exhibiting efficient production of (S)-MAN with 96.8% eep , was isolated and further analyzed. The increased pulling force observed during SMD simulation was found to be in good coincidence with the formation of hydrogen bonds between (R)-MAN and residue ßHis37. (R)-MAN had to break these barriers to enter the active site of nitrile hydratase and S selectivity was thus improved. The results indicated that combining steered molecular dynamics simulation with a traditional semi-rational design significantly reduced the select range of hot-spot residues for the evolution of NHase stereoselectivity, which could serve as an alternative for the modulation of enzyme stereoselectivity.


Assuntos
Acetonitrilas/química , Proteínas de Bactérias/química , Hidroliases/química , Engenharia de Proteínas , Rhodococcus/enzimologia , Proteínas de Bactérias/genética , Hidroliases/genética , Rhodococcus/genética , Estereoisomerismo
7.
J Biol Chem ; 291(4): 1735-1750, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26586916

RESUMO

We recently reported that an amide bond is unexpectedly formed by an acyl-CoA synthetase (which catalyzes the formation of a carbon-sulfur bond) when a suitable acid and l-cysteine are used as substrates. DltA, which is homologous to the adenylation domain of nonribosomal peptide synthetase, belongs to the same superfamily of adenylate-forming enzymes, which includes many kinds of enzymes, including the acyl-CoA synthetases. Here, we demonstrate that DltA synthesizes not only N-(d-alanyl)-l-cysteine (a dipeptide) but also various oligopeptides. We propose that this enzyme catalyzes peptide synthesis by the following unprecedented mechanism: (i) the formation of S-acyl-l-cysteine as an intermediate via its "enzymatic activity" and (ii) subsequent "chemical" S → N acyl transfer in the intermediate, resulting in peptide formation. Step ii is identical to the corresponding reaction in native chemical ligation, a method of chemical peptide synthesis, whereas step i is not. To the best of our knowledge, our discovery of this peptide synthesis mechanism involving an enzymatic reaction and a subsequent chemical reaction is the first such one to be reported. This new process yields peptides without the use of a thioesterified fragment, which is required in native chemical ligation. Together with these findings, the same mechanism-dependent formation of N-acyl compounds by other members of the above-mentioned superfamily demonstrated that all members most likely form peptide/amide compounds by using this novel mechanism. Each member enzyme acts on a specific substrate; thus, not only the corresponding peptides but also new types of amide compounds can be formed.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Carbono-Oxigênio Ligases/metabolismo , Peptídeos/metabolismo , Bacillus subtilis/química , Bacillus subtilis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Biocatálise , Carbono-Oxigênio Ligases/química , Carbono-Oxigênio Ligases/genética , Especificidade por Substrato
8.
Proc Natl Acad Sci U S A ; 111(48): 17152-7, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25411318

RESUMO

Organocatalysts, low-molecular mass organic compounds composed of nonmetallic elements, are often used in organic synthesis, but there have been no reports of organocatalysts of biological origin that function in vivo. Here, we report that actinorhodin (ACT), a natural product derived from Streptomyces coelicolor A3(2), acts as a biocatalyst. We purified ACT and assayed its catalytic activity in the oxidation of L-ascorbic acid and L-cysteine as substrates by analytical methods for enzymes. Our findings were as follows: (i) oxidation reactions producing H2O2 proceeded upon addition of ACT to the reaction mixture; (ii) ACT was not consumed during the reactions; and (iii) a small amount (catalytic amount) of ACT consumed an excess amount of the substrates. Even at room temperature, atmospheric pressure, and neutral pH, ACT showed catalytic activity in aqueous solution, and ACT exhibited substrate specificity in the oxidation reactions. These findings reveal ACT to be an organocatalyst. ACT is known to show antibiotic activity, but its mechanism of action remains unknown. On the basis of our results, we propose that ACT kills bacteria by catalyzing the production of toxic levels of H2O2. We also screened various other natural products of bacterial, plant, and animal origins and found that several of the compounds exhibited catalytic activity, suggesting that living organisms produce and use these compounds as biocatalysts in nature.


Assuntos
Produtos Biológicos/metabolismo , Oxirredutases/metabolismo , Streptomyces coelicolor/metabolismo , Antraquinonas/química , Antraquinonas/metabolismo , Antibacterianos/química , Antibacterianos/metabolismo , Ácido Ascórbico/metabolismo , Produtos Biológicos/química , Catálise , Cromatografia Líquida de Alta Pressão , Cisteína/metabolismo , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Estrutura Molecular , Peso Molecular , Oxirredução , Oxirredutases/química , Especificidade por Substrato , Temperatura
9.
Biosci Biotechnol Biochem ; 80(6): 1230-7, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26923287

RESUMO

An inducible expression vector, pSH19, which harbors regulatory expression system PnitA-NitR, for streptomycetes was constructed previously. Here, we have modified pSH19 to obtain shuttle vectors for Streptomyces-E. coli by introducing the replication origin of a plasmid for E. coli (ColE1) and an antibiotic-resistant gene. Six inducible shuttle vectors, pESH19cF, pESH19cR, pESH19kF, pESH19kR, pESH19aF, and pESH19aR, for Streptomyces-E. coli, were successfully developed. The stability of these vectors was examined in five different E. coli strains and Streptomyces lividans TK24. The stability test showed that the pSH19-derived shuttle vectors were stable in E. coli Stbl2 and S. lividans TK24. Heterologous expression experiments involving each of the catechol 2,3-dioxygenase, nitrilase, and N-substituted formamide deformylase genes as a reporter gene showed that pESH19cF, pESH19kF, and pESH19aF possess inducible expression ability in S. lividans TK24. Thus, these vectors were found to be useful expression tools for experiments on both Gram-negative and Gram-positive bacterial genes.


Assuntos
Aminoidrolases/genética , Proteínas de Bactérias/genética , Escherichia coli/genética , Vetores Genéticos/metabolismo , Plasmídeos/metabolismo , Streptomyces lividans/genética , Amidoidrolases/genética , Amidoidrolases/metabolismo , Aminoidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Catecol 2,3-Dioxigenase/genética , Catecol 2,3-Dioxigenase/metabolismo , Escherichia coli/metabolismo , Expressão Gênica , Genes Reporter , Engenharia Genética , Vetores Genéticos/química , Plasmídeos/química , Regiões Promotoras Genéticas , Streptomyces lividans/metabolismo
10.
J Ind Microbiol Biotechnol ; 43(2-3): 143-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26408311

RESUMO

Streptomyces and related bacteria produce a wide variety of secondary metabolites. Of these, many compounds have industrial applications, but the question of why this group of microorganism produces such various kinds of biologically active substances has not yet been clearly answered. Here, we overview the results from our studies on the novel function and role of Streptomyces metabolites. The diverged action of negative and positive influences onto the physiology of various microorganisms infers the occurrence of complex microbial interactions due to the effect of small molecules produced by Streptomyces. The interactions may serve as a basis for the constitution of biological community.


Assuntos
Interações Microbianas , Streptomyces/metabolismo , Animais , Humanos , Metabolismo Secundário
11.
Proc Natl Acad Sci U S A ; 110(8): 2810-5, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23382199

RESUMO

Aldoxime dehydratase (OxdA), which is a unique heme protein, catalyzes the dehydration of an aldoxime to a nitrile even in the presence of water in the reaction mixture. Unlike the utilization of H(2)O(2) or O(2) as a mediator of catalysis by other heme-containing enzymes (e.g., P450), OxdA is notable for the direct binding of a substrate to the heme iron. Here, we determined the crystal structure of OxdA. We then constructed OxdA mutants in which each of the polar amino acids lying within ∼6 Šof the iron atom of the heme was converted to alanine. Among the purified mutant OxdAs, S219A had completely lost and R178A exhibited a reduction in the activity. Together with this finding, the crystal structural analysis of OxdA and spectroscopic and electrostatic potential analyses of the wild-type and mutant OxdAs suggest that S219 plays a key role in the catalysis, forming a hydrogen bond with the substrate. Based on the spatial arrangement of the OxdA active site and the results of a series of mutagenesis experiments, we propose the detailed catalytic mechanism of general aldoxime dehydratases: (i) S219 stabilizes the hydroxy group of the substrate to increase its basicity; (ii) H320 acts as an acid-base catalyst; and (iii) R178 stabilizes the heme, and would donate a proton to and accept one from H320.


Assuntos
Carbono/metabolismo , Hidroliases/química , Nitrogênio/metabolismo , Biocatálise , Cristalografia por Raios X , Hidroliases/genética , Hidroliases/metabolismo , Modelos Moleculares , Mutação , Conformação Proteica
12.
Biochem Biophys Res Commun ; 450(1): 401-8, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24944015

RESUMO

Nitrile hydratase (NHase), which catalyzes the hydration of nitriles to amides, is the key enzyme for the production of amides in industries. However, the poor stability of this enzyme under the reaction conditions is a drawback of its industrial application. In this study, we aimed to improve the stability of NHase (PpNHase) from Pseudomonas putida NRRL-18668 using a homologous protein fragment swapping strategy. One thermophilic NHase fragment from Comamonas testosteroni 5-MGAM-4D and two fragments from Pseudonocardia thermophila JCM3095 were selected to swap the corresponding fragments of PpNHase. Seven chimeric NHases were designed using STAR (site targeted amino recombination) software and molecular dynamics to determine the crossover sites for fragment recombination. All constructed chimeric NHases showed 1.4- to 3.5-fold enhancement in thermostability and six of them become more tolerant to high-concentration product. Notably, one of these NHases, 3AB, exhibited a 1.4±0.05-fold increase in activity compared to the wild-type PpNHase. Circular dichroism spectrum analysis and homology modeling revealed that the 3AB slightly differed in secondary structure from wild-type PpNHase. The 3AB constructed in this study is useful for further industrial application, and the method for designing the chimeric protein using homologous protein fragment swapping without a decrease in activity may be a strategy to improve the stability of other enzymes.


Assuntos
Hidroliases/química , Hidroliases/ultraestrutura , Modelos Químicos , Modelos Moleculares , Engenharia de Proteínas/métodos , Sequência de Aminoácidos , Sítios de Ligação , Ativação Enzimática , Estabilidade Enzimática , Dados de Sequência Molecular , Ligação Proteica , Relação Estrutura-Atividade
13.
Appl Environ Microbiol ; 80(1): 61-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24123742

RESUMO

Previously, we isolated a new enzyme, N-substituted formamide deformylase, that catalyzes the hydrolysis of N-substituted formamide to the corresponding amine and formate (H. Fukatsu, Y. Hashimoto, M. Goda, H. Higashibata, and M. Kobayashi, Proc. Natl. Acad. Sci. U. S. A. 101:13726-13731, 2004, doi:10.1073/pnas.0405082101). Here, we discovered that this enzyme catalyzed the reverse reaction, synthesizing N-benzylformamide (NBFA) from benzylamine and formate. The reverse reaction proceeded only in the presence of high substrate concentrations. The effects of pH and inhibitors on the reverse reaction were almost the same as those on the forward reaction, suggesting that the forward and reverse reactions are both catalyzed at the same catalytic site. Bisubstrate kinetic analysis using formate and benzylamine and dead-end inhibition studies using a benzylamine analogue, aniline, revealed that the reverse reaction of this enzyme proceeds via an ordered two-substrate, two-product (bi-bi) mechanism in which formate binds first to the enzyme active site, followed by benzylamine binding and the subsequent release of NBFA. To our knowledge, this is the first report of the reverse reaction of an amine-forming deformylase. Surprisingly, analysis of the substrate specificity for acids demonstrated that not only formate, but also acetate and propionate (namely, acids with numbers of carbon atoms ranging from C1 to C3), were active as acid substrates for the reverse reaction. Through this reaction, N-substituted carboxamides, such as NBFA, N-benzylacetamide, and N-benzylpropionamide, were synthesized from benzylamine and the corresponding acid substrates.


Assuntos
Amidoidrolases/metabolismo , Benzilaminas/metabolismo , Formamidas/metabolismo , Formiatos/metabolismo , Compostos de Anilina/metabolismo , Domínio Catalítico , Inibidores Enzimáticos/metabolismo , Concentração de Íons de Hidrogênio , Cinética
14.
Proc Natl Acad Sci U S A ; 108(16): 6615-20, 2011 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-21467222

RESUMO

Polyphenol curcumin, a yellow pigment, derived from the rhizomes of a plant (Curcuma longa Linn) is a natural antioxidant exhibiting a variety of pharmacological activities and therapeutic properties. It has long been used as a traditional medicine and as a preservative and coloring agent in foods. Here, curcumin-converting microorganisms were isolated from human feces, the one exhibiting the highest activity being identified as Escherichia coli. We are thus unique in discovering that E. coli was able to act on curcumin. The curcumin-converting enzyme was purified from E. coli and characterized. The native enzyme had a molecular mass of about 82 kDa and consisted of two identical subunits. The enzyme has a narrow substrate spectrum, preferentially acting on curcumin. The microbial metabolism of curcumin by the purified enzyme was found to comprise a two-step reduction, curcumin being converted NADPH-dependently into an intermediate product, dihydrocurcumin, and then the end product, tetrahydrocurcumin. We named this enzyme "NADPH-dependent curcumin/dihydrocurcumin reductase" (CurA). The gene (curA) encoding this enzyme was also identified. A homology search with the BLAST program revealed that a unique enzyme involved in curcumin metabolism belongs to the medium-chain dehydrogenase/reductase superfamily.


Assuntos
Curcumina/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Intestinos/microbiologia , Oxirredutases/genética , Oxirredutases/metabolismo , Sequência de Bases , Humanos , Dados de Sequência Molecular , NADP/genética , NADP/metabolismo , Oxirredutases/química , Oxirredutases/isolamento & purificação
15.
BMC Biotechnol ; 13: 48, 2013 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-23731949

RESUMO

BACKGROUND: Activators of Nitrile hydratase (NHase) are essential for functional NHase biosynthesis. However, the activator P14K in P. putida is difficult to heterogeneously express, which retards the clarification of the mechanism of P14K involved in the maturation of NHase. Although a strep tag containing P14K (strep-P14K) was over-expressed, its low expression level and low stability affect the further analysis. RESULTS: We successfully expressed P14K through genetic modifications according to N-end rule and analyzed the mechanism for its difficult expression. We found that mutation of the second N-terminal amino-acid of the protein from lysine to alanine or truncating the N-terminal 16 amino-acid sequence resulted in successful expression of P14K. Moreover, fusion of a pelB leader and strep tag together (pelB-strep-P14K) at the N-terminus increased P14K expression. In addition, the pelB-strep-P14K was more stable than the strep-P14K. CONCLUSIONS: Our results are not only useful for clarification of the role of P14K involved in the NHase maturation, but also helpful for heterologous expression of other difficult expression proteins.


Assuntos
Proteínas de Bactérias/biossíntese , Escherichia coli/genética , Hidroliases/metabolismo , Pseudomonas putida/genética , Proteínas Recombinantes/biossíntese , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Ativação Enzimática , Escherichia coli/metabolismo , Genes Bacterianos , Dados de Sequência Molecular , Estabilidade Proteica , Pseudomonas putida/enzimologia , Pseudomonas putida/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
16.
Appl Environ Microbiol ; 79(2): 707-13, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23124229

RESUMO

Microarray analyses revealed that the expression of genes for secondary metabolism together with that of primary metabolic genes was induced by chitin in autoclaved soil cultures of Streptomyces coelicolor A3(2). The data also indicated that DasR was involved in the regulation of gene expression for chitin catabolism, secondary metabolism, and stress responses.


Assuntos
Quitina/metabolismo , Regulação Bacteriana da Expressão Gênica , Redes e Vias Metabólicas/genética , Microbiologia do Solo , Streptomyces coelicolor/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Genes Bacterianos , Análise em Microsséries , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo
17.
J Biol Chem ; 285(45): 34793-802, 2010 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-20826798

RESUMO

We previously discovered N-substituted formamide deformylase (NfdA) in Arthrobacter pascens F164, which degrades N-substituted formamide (Fukatsu, H., Hashimoto, Y., Goda, M., Higashibata, H., and Kobayashi, M. (2004) Proc. Natl. Acad. Sci. U.S.A. 101, 13726-13731). In this study, we found an enzyme involved in the first step of isonitrile metabolism, isonitrile hydratase, that hydrates isonitrile to the corresponding N-substituted formamide. First, we investigated the optimum culture conditions for the production of isonitrile hydratase. The highest enzyme activity was obtained when A. pascens F164 was cultured in a nutrient medium containing N-benzylformamide. This Arthrobacter isonitrile hydratase was purified, characterized, and compared with Pseudomonas putida N19-2 isonitrile hydratase (InhA), which is the sole one reported at present. Arthrobacter isonitrile hydratase was found to have a molecular mass of about 530 kDa and to consist of 12 identical subunits. The apparent K(m) value for cyclohexyl isocyanide was 0.95 ± 0.05 mm. A. pascens F164 grew and exhibited the isonitrile hydratase and N-substituted formamide deformylase activities when cultured in a medium containing an isonitrile as the sole carbon and nitrogen sources. However, both enzyme activities were not observed on culture in a medium containing glycerol and (NH(4))(2)SO(4) as the sole carbon and nitrogen sources, respectively. These findings suggested that the Arthrobacter enzyme is an inducible enzyme, possibly involved in assimilation and/or detoxification of isonitrile. Moreover, gene cloning of the Arthrobacter enzyme revealed no sequence similarity between this enzyme and InhA. Comparison of their properties and features demonstrated that the two enzymes are biochemically, immunologically, and structurally different from each other. Thus, we discovered a new isonitrile hydratase named InhB.


Assuntos
Arthrobacter/enzimologia , Domínio Catalítico , Cianetos/química , Hidroliases , Arthrobacter/genética , Sequência de Bases , Cianetos/metabolismo , Indução Enzimática , Hidroliases/química , Hidroliases/genética , Hidroliases/isolamento & purificação , Hidroliases/metabolismo , Dados de Sequência Molecular , Peso Molecular , Pseudomonas putida/enzimologia , Pseudomonas putida/genética , Especificidade por Substrato
18.
Proc Natl Acad Sci U S A ; 105(39): 14849-54, 2008 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-18809911

RESUMO

Several general mechanisms of metallocenter biosynthesis have been reported and reviewed, and in all cases, the components or subunits of an apoprotein remain in the final holoprotein. Here, we first discovered that one subunit of an apoenzyme did not remain in the functional holoenzyme. The cobalt-containing low-molecular-mass nitrile hydratase (L-NHase) of Rhodococcus rhodochrous J1 consists of beta- and alpha-subunits encoded by the nhlBA genes, respectively. An ORF, nhlE, just downstream of nhlBA, was found to be necessary for L-NHase activation. In contrast to the cobalt-containing L-NHase (holo-L-NHase containing Cys-SO(2)(-) and Cys-SO(-) metal ligands) derived from nhlBAE, the gene products derived from nhlBA were cobalt-free L-NHase (apo-L-NHase lacking oxidized cysteine residues). We discovered an L-NHase maturation mediator, NhlAE, consisting of NhlE and the cobalt- and oxidized cysteine-containing alpha-subunit of L-NHase. The incorporation of cobalt into L-NHase was shown to depend on the exchange of the nonmodified cobalt-free alpha-subunit of apo-L-NHase with the cobalt-containing cysteine-modified alpha-subunit of NhlAE. This is a posttranslational maturation process different from general mechanisms of metallocenter biosynthesis known so far: the unexpected behavior of a protein in a protein complex, which we named "self-subunit swapping."


Assuntos
Proteínas de Bactérias/metabolismo , Cobalto/metabolismo , Hidroliases/metabolismo , Metaloproteínas/metabolismo , Processamento de Proteína Pós-Traducional , Rhodococcus/enzimologia , Apoenzimas/genética , Apoenzimas/metabolismo , Proteínas de Bactérias/genética , Cisteína/metabolismo , Ativação Enzimática , Holoenzimas/genética , Holoenzimas/metabolismo , Hidroliases/genética , Metaloproteínas/genética , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Rhodococcus/genética
19.
J Gen Appl Microbiol ; 67(1): 24-32, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33162426

RESUMO

Pseudomonas chlororaphis B23 yields nitrile hydratase (NHase) used for the production of 5-cyanovaleramide at the industrial level. Although the nhpC gene (known as P47K) located just downstream of the NHase structural genes (nhpAB) has been important for efficient NHase expression, the key role of nhpC remains poorly studied. Here, we purified two NHases expressed in the presence and absence of nhpC, respectively, and characterized them. The purified NHase expressed with nhpC proved to be an iron-containing holo-NHase, while the purified one expressed without nhpC was identified as an apo-NHase, which was iron-deficient. These findings indicated that nhpC would play a crucial role in the post-translational incorporation of iron into the NHase active site as a metal chaperone. In the overall amino acid sequence of NhpC, only the N-terminus exhibited similarities to the CobW protein involved in cobalamin biosynthesis, the UreG and HypB proteins essential for the metallocenter biosynthesis of urease and hydrogenase, respectively. NhpC contains a P-loop motif known as a nucleotide-binding site, and Lys23 and Thr24 are conserved in the P-loop motif in NhpC. Expression analysis of NHase formed in the presence of each mutant NhpC (i.e., K23A and T24A) resulted in immunodetectable production of a mutant NhpC and remarkable expression of NHase lacking the enzyme activity. These findings suggested that an intact P-loop containing Lys23 and Thr24 would be essential for the NhpC function in vivo for the post-translational metallocenter assembly of NHase.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Hidroliases/biossíntese , Hidroliases/genética , Pseudomonas chlororaphis/enzimologia , Pseudomonas chlororaphis/genética , Pseudomonas chlororaphis/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Ferro , Mutagênese Sítio-Dirigida , Proteínas Recombinantes , Urease/metabolismo
20.
Nat Commun ; 12(1): 6294, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728636

RESUMO

C-Glycosides, in which a sugar moiety is linked via a carbon-carbon (C-C) bond to a non-sugar moiety (aglycone), are found in our food and medicine. The C-C bond is cleaved by intestinal microbes and the resulting aglycones exert various bioactivities. Although the enzymes responsible for the reactions have been identified, their catalytic mechanisms and the generality of the reactions in nature remain to be explored. Here, we present the identification and structural basis for the activation of xenobiotic C-glycosides by heterocomplex C-deglycosylation enzymes from intestinal and soil bacteria. They are found to be metal-dependent enzymes exhibiting broad substrate specificity toward C-glycosides. X-ray crystallographic and cryo-electron microscopic analyses, as well as structure-based mutagenesis, reveal the structural details of these enzymes and the detailed catalytic mechanisms of their remarkable C-C bond cleavage reactions. Furthermore, bioinformatic and biochemical analyses suggest that the C-deglycosylation enzymes are widely distributed in the gut, soil, and marine bacteria.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Trato Gastrointestinal/metabolismo , Glicosídeos/metabolismo , Sequência de Aminoácidos , Bactérias/genética , Bactérias/isolamento & purificação , Proteínas de Bactérias/química , Cristalografia por Raios X , Trato Gastrointestinal/microbiologia , Glicosídeos/química , Glicosilação , Filogenia , Elementos Estruturais de Proteínas , Homologia de Sequência , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA