Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 11(6): e1004883, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26042774

RESUMO

Chlamydia trachomatis is an important human pathogen that replicates inside the infected host cell in a unique vacuole, the inclusion. The formation of this intracellular bacterial niche is essential for productive Chlamydia infections. Despite its importance for Chlamydia biology, a holistic view on the protein composition of the inclusion, including its membrane, is currently missing. Here we describe the host cell-derived proteome of isolated C. trachomatis inclusions by quantitative proteomics. Computational analysis indicated that the inclusion is a complex intracellular trafficking platform that interacts with host cells' antero- and retrograde trafficking pathways. Furthermore, the inclusion is highly enriched for sorting nexins of the SNX-BAR retromer, a complex essential for retrograde trafficking. Functional studies showed that in particular, SNX5 controls the C. trachomatis infection and that retrograde trafficking is essential for infectious progeny formation. In summary, these findings suggest that C. trachomatis hijacks retrograde pathways for effective infection.


Assuntos
Infecções por Chlamydia/metabolismo , Chlamydia trachomatis/patogenicidade , Vacúolos/metabolismo , Separação Celular , Chlamydia trachomatis/metabolismo , Citometria de Fluxo , Células HeLa , Humanos , Corpos de Inclusão/metabolismo , Transporte Proteico , Proteoma , Proteômica , RNA Interferente Pequeno , Espectrometria de Massas em Tandem , Transfecção
2.
Antimicrob Agents Chemother ; 58(9): 5537-46, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25001308

RESUMO

Chlamydia trachomatis is a medically important human pathogen causing different diseases, including trachoma, the leading cause of preventable blindness in developing countries, and sexually transmitted infections that can lead to infertility and ectopic pregnancies. There is no vaccine against C. trachomatis at present. Broad-spectrum antibiotics are used as standard therapy to treat the infection but have unwanted side effects, such as inducing persistent or recurring infections and affecting the host microbiome, necessitating the development of novel anti-Chlamydia therapies. Here, we describe the establishment of a robust, fast, and simple plaque assay using liquid overlay medium (LOM) for the identification of anti-Chlamydia compounds. Using the LOM plaque assay, we identified nitrobenzoxadiazole (NBD)-labeled 1-O-methyl-ceramide-C16 as a compound that efficiently inhibits C. trachomatis replication without affecting the viability of the host cell. Further detailed analyses indicate that 1-O-methyl-NBD-ceramide-C16 acts outside the inclusion. Thereby, 1-O-methyl-NBD-ceramide-C16 represents a lead compound for the development of novel anti-Chlamydia drugs and furthermore constitutes an agent to illuminate sphingolipid trafficking pathways in Chlamydia infections.


Assuntos
Antibacterianos/farmacologia , Ceramidas/farmacologia , Chlamydia trachomatis/efeitos dos fármacos , Técnicas de Laboratório Clínico/métodos , Animais , Antibacterianos/uso terapêutico , Transporte Biológico , Linhagem Celular Tumoral , Ceramidas/uso terapêutico , Infecções por Chlamydia/tratamento farmacológico , Descoberta de Drogas/métodos , Células HeLa , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Esfingolipídeos/metabolismo
3.
Int J Med Microbiol ; 304(7): 877-93, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25082204

RESUMO

The distinctive and unique features of the avian and mammalian zoonotic pathogen Chlamydia (C.) psittaci include the fulminant course of clinical disease, the remarkably wide host range and the high proportion of latent infections that are not leading to overt disease. Current knowledge on associated diseases is rather poor, even in comparison to other chlamydial agents. In the present paper, we explain and summarize the major findings of a national research network that focused on the elucidation of host-pathogen interactions in vitro and in animal models of C. psittaci infection, with the objective of improving our understanding of genomics, pathology, pathophysiology, molecular pathogenesis and immunology, and conceiving new approaches to therapy. We discuss new findings on comparative genome analysis, the complexity of pathophysiological interactions and systemic consequences, local immune response, the role of the complement system and antigen presentation pathways in the general context of state-of-the-art knowledge on chlamydial infections in humans and animals and single out relevant research topics to fill remaining knowledge gaps on this important yet somewhat neglected pathogen.


Assuntos
Chlamydophila psittaci/genética , Chlamydophila psittaci/imunologia , Interações Hospedeiro-Patógeno , Patologia Clínica , Psitacose/imunologia , Psitacose/patologia , Animais , Chlamydophila psittaci/patogenicidade , Modelos Animais de Doenças , Genômica , Humanos , Psitacose/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA