Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharmacol Res ; 179: 106193, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35358682

RESUMO

Early-life diets may have a long-lasting impact on metabolic health. This study tested the hypothesis that an early-life diet with large, phospholipid-coated lipid droplets (Concept) induces sustained improvements of hepatic mitochondrial function and metabolism. Young C57BL/6j mice were fed Concept or control (CTRL) diet from postnatal day 15 (PN15) to PN42, followed by western style (WSD) or standard rodent diet (AIN) until PN98. Measurements comprised body composition, insulin resistance (HOMA-IR), tricarboxylic acid (TCA) cycle- and ß-oxidation-related hepatic oxidative capacity using high-resolution respirometry, mitochondrial dynamics, mediators of insulin resistance (diacylglycerols, DAG) or ceramides) in subcellular compartments as well as systemic oxidative stress. Concept feeding increased TCA cycle-related respiration by 33% and mitochondrial fusion protein-1 by 65% at PN42 (both p 0.05). At PN98, CTRL, but not Concept, mice developed hyperinsulinemia (CTRL/AIN 0.22 ± 0.44 vs. CTRL/WSD 1.49 ± 0.53 nmol/l, p 0.05 and Concept/AIN 0.20 ± 0.38 vs. Concept/WSD 1.00 ± 0.29 nmol/l, n.s.) and insulin resistance after WSD (CTRL/AIN 107 ± 23 vs. CTRL/WSD 738 ± 284, p 0.05 and Concept/AIN 109 ± 24 vs. Concept/WSD 524 ± 157, n.s.). WSD-induced liver weight was 18% lower in adult Concept-fed mice and ß-oxidation-related respiration was 69% higher (p 0.05; Concept/WSD vs. Concept/AIN) along with lower plasma lipid peroxides (CTRL/AIN 4.85 ± 0.28 vs. CTRL/WSD 5.73 ± 0.47 µmol/l, p 0.05 and Concept/AIN 4.49 ± 0.31 vs. Concept/WSD 4.42 ± 0.33 µmol/l, n.s.) and were in part protected from WSD-induced increase in hepatic cytosolic DAG C16:0/C18:1. Early-life feeding of Concept partly protected from WSD-induced insulin resistance and systemic oxidative stress, potentially via changes in specific DAG and mitochondrial function, highlighting the role of early life diets on metabolic health later in life.


Assuntos
Resistência à Insulina , Metabolismo dos Lipídeos , Animais , Dieta , Gorduras na Dieta , Modelos Animais de Doenças , Gotículas Lipídicas/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
2.
Br J Nutr ; 115(11): 1930-7, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27040581

RESUMO

Epidemiological studies have demonstrated protective effects of breast-feeding on childhood obesity. Differences between human milk and infant milk formula (IMF) in dietary lipid structure may contribute to this effect. In our mouse model, feeding a diet containing large lipid droplets coated with phospholipids (PL) (Nuturis®; PL of milk fat globule membrane (MFGM) fraction origin) in early life protected against excessive body fat accumulation following a diet challenge in adult life. We now set out to determine the relevance of increased droplet size and/or MFGM lipid droplet coating to the observed anti-obesogenic effects in adult life. From day 16 to 42, male mouse pups were exposed to diets with small (S) or large (L) lipid droplets (0·3 v. 2·9 µm average mode diameter, respectively), either without MFGM or with MFGM coating around the lipid droplet, resulting in four groups: S (control diet), L, Scoating and Lcoating (Nuturis® IMF diet). Mice were subsequently challenged with a Western-style diet until dissection at postnatal day 98. A non-challenged group served as reference (REF). We repeatedly determined body composition between postnatal day 42 and 98. At day 98 plasma and gene expression measurements were performed. Only the Nuturis® IMF diet (Lcoating) in early life containing MFGM-coated large lipid droplets reduced body fat mass to a level comparable with the REF group. These data support the notion that the structural aspects of lipids in human milk, for example, both lipid droplet size as well as the MFGM coating, may contribute to its reported protective effect against obesity in later life.


Assuntos
Adipogenia/efeitos dos fármacos , Tecido Adiposo/metabolismo , Dieta , Glicolipídeos/farmacologia , Glicoproteínas/farmacologia , Lipídeos/farmacologia , Obesidade/metabolismo , Fosfolipídeos/farmacologia , Animais , Composição Corporal , Gorduras na Dieta/análise , Gorduras na Dieta/farmacologia , Feminino , Humanos , Lactente , Fórmulas Infantis , Gotículas Lipídicas , Metabolismo dos Lipídeos , Lipídeos/análise , Masculino , Camundongos Endogâmicos C57BL , Leite/química , Leite Humano/química , Obesidade/prevenção & controle , Óleos de Plantas
3.
Br J Nutr ; 106(10): 1609-15, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21736790

RESUMO

The site of intestinal fat delivery affects satiety and may affect food intake in humans. Animal data suggest that the length of the small intestine exposed to fat is also relevant. The aim of the present study was to investigate whether increasing the areas of intestinal fat exposure and the way it is exposed would affect satiety parameters and food intake. In the present single-blind, randomised, cross-over study, fifteen volunteers, each intubated with a naso-ileal tube, received four treatments on consecutive days. The oral control (control treatment) was a liquid meal (LM) containing 6 g fat ingested at t = 0 min, with saline infusion at t = 30-120 min. Experimental treatments were a fat-free LM at t = 0 min, with either 6 g oil delivered sequentially (2 g duodenal, t = 30-60 min; 2 g jejunal, t = 60-90 min; 2 g ileal, t = 90-120 min), simultaneously (2 g each to all sites, t = 30-120 min) or ileal only (6 g ileal, t = 30-120 min). Satiety parameters (hunger and fullness) and cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), peptide YY (PYY) secretion were measured until t = 180 min, when ad libitum food intake was assessed. Only the ileum treatment reduced food intake significantly over the control treatment. The ileum and simultaneous treatments significantly reduced hunger compared with the control treatment. Compared with control, no differences were observed for PYY, CCK and GLP-1 with regard to 180 min integrated secretion. Ileal fat infusion had the most pronounced effect on food intake and satiety. Increasing the areas of intestinal fat exposure only affected hunger when fat was delivered simultaneously, not sequentially, to the exposed areas. These results demonstrate that ileal brake activation offers an interesting target for the regulation of ingestive behaviour.


Assuntos
Gorduras na Dieta/administração & dosagem , Ingestão de Energia , Fome , Intestino Delgado/fisiologia , Adolescente , Adulto , Feminino , Humanos , Intestino Delgado/anatomia & histologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
4.
Nutr Metab (Lond) ; 18(1): 101, 2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34838065

RESUMO

Being born small-for-gestational-age, especially with subsequent catch-up growth, is associated with impaired metabolic health in later-life. We previously showed that a postnatal diet with an adapted lipid droplet structure can ameliorate some of the adverse metabolic consequences in intrauterine growth-restricted (IUGR) rats. The aim of the present work was to explore possible underlying mechanism(s) and potential biomarkers. To this end, serum metabolomics was performed in postnatal day (PN) 42 and PN96 samples of the above-mentioned rat offspring, born after uterine vasculature ligation. Blood samples were collected at PN42, directly after a postnatal dietary intervention with either complex lipid matrix (CLM) or control (CTRL) diet, and at PN96 after a subsequent western-style diet (WSD). Offspring of Non-operated (NOP) dams fed CTRL in early life were included as control group. In the PN42 metabolomics data, 11 co-abundance modules of metabolites were identified, of which four were significantly correlated to adult blood glucose levels at PN96. Further analyses showed that Lysophosphatidylcholine(18:2) (LysoPC(18:2)) levels were reduced by ligation (p < 0.01) and restored in CLM fed animals (p < 0.05). LysoPC(18:2) levels at PN42 correlated inversely with adult blood glucose levels. These data indicate that early-life LysoPC(18:2) blood levels may predict adult blood glucose levels and are affected by a postnatal diet with an adapted lipid droplet structure in IUGR offspring.

5.
J Nutr Biochem ; 79: 108333, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32045724

RESUMO

The maternal protein diet during the perinatal period can program the health of adult offspring. This study in rats evaluated the effects of protein quantity and quality in the maternal diet during gestation and lactation on weight and adiposity in female offspring. Six groups of dams were fed a high-protein (HP; 47% protein) or normal-protein (NP; 19% protein) isocaloric diet during gestation (G) using either cow's milk (M), pea (P) or turkey (T) proteins. During lactation, all dams received the NP diet (protein source unchanged). From postnatal day (PND) 28 until PND70, female pups (n=8) from the dam milk groups were exposed to either an NP milk diet (NPMW) or to dietary self-selection (DSS). All other pups were only exposed to DSS. The DSS design was a choice between five food cups containing HPM, HPP, HPT, carbohydrates or lipids. The weights and food intakes of the animals were recorded throughout the study, and samples from offspring were collected on PND70. During the lactation and postweaning periods, body weight was lower in the pea and turkey groups (NPG and HPG) versus the milk group (P<.0001). DSS groups increased their total energy and fat intakes compared to the NPMW group (P<.0001). In all HPG groups, total adipose tissue was increased (P=.03) associated with higher fasting plasma leptin (P<.05). These results suggest that the maternal protein source impacted offspring body weight and that protein excess during gestation, irrespective of its source, increased the risk of adiposity development in female adult offspring.


Assuntos
Dieta Rica em Proteínas/efeitos adversos , Proteínas Alimentares/administração & dosagem , Fenômenos Fisiológicos da Nutrição Materna , Sobrepeso/metabolismo , Adiposidade/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Peso Corporal/efeitos dos fármacos , Dieta/métodos , Dieta Rica em Proteínas/métodos , Feminino , Lactação , Leptina/sangue , Leite/metabolismo , Sobrepeso/epidemiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Ratos Wistar , Fatores de Risco
6.
Front Physiol ; 10: 836, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354508

RESUMO

White adipose tissue (WAT) distribution and WAT mitochondrial function contribute to total body metabolic health throughout life. Nutritional interventions starting in the postweaning period may impact later life WAT health and function. We therefore assessed changes in mitochondrial density and function markers in WAT depots of young mice. Inguinal (ING), epididymal (EPI) and retroperitoneal (RP) WAT of 21, 42 and 98 days old C57BL/6j mice was collected. Mitochondrial density [citrate synthase (CS), mtDNA] and function [subunits of oxidative phosphorylation complexes (OXPHOS)] markers were analyzed, together with gene expression of browning markers (Ucp1, Cidea). mRNA of ING WAT of 21 and 98 old mice was sequenced to further investigate functional changes of the mitochondria and alterations in cell populations. CS levels decreased significantly over time in all depots. ING showed most pronounced changes, including significantly decreased levels of OXPHOS complex I, II, and III subunits and gene expression of Ucp1 (PN21-42 and PN42-98) and Cidea (PN42-98). White adipocyte markers were higher at PN98 in ING WAT. Analyses of RNA sequence data showed that the mitochondrial functional profile changed over time from "growth-supporting" mitochondria focused on ATP production (and dissipation), to more steady-state mitochondria with more diverse functions and higher biosynthesis. Mitochondrial density and energy metabolism markers declined in all three depots over time after weaning. This was most pronounced in ING WAT and associated with reduced browning markers, increased whitening and an altered metabolism. In particular the PN21-42 period may provide a time window to study mitochondrial adaptation and effects of nutritional exposures relevant for later life metabolic health.

7.
Nutrients ; 11(1)2019 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-30621263

RESUMO

Diet of mothers during gestation may impact offspring phenotype. This study evaluated the consequences of a maternal High-Protein (HP) diet during gestation on food preferences and phenotypic characteristics in adult rat offspring. Dams were fed a HP or a Normal-Protein (NP) isocaloric diet during gestation only. Weaned female pups were divided into 3 diet groups: NP control or one of two dietary self-selection (DSS) conditions. In DSS1, offspring had a free choice between proteins (100%) or a mix of carbohydrates (88%) and lipids (12%). In DSS2, the choice was between proteins (100%), carbohydrate (100%) or lipids (100%). DSS2 groups consumed more of their energy from protein and lipids, with a decreased carbohydrate intake (p < 0.0001) compared to NP groups, regardless of the maternal diet. Offspring from HP gestation dams fed the DSS2 diet (HPDSS2) had a 41.2% increase of total adiposity compared to NPDSS2 (p < 0.03). Liver Insulin receptor and Insulin substrate receptor 1 expression was decreased in offspring from HP compared to NP gestation dams. These results showed the specific effects of DSS and maternal diet and data suggested that adult, female offspring exposed to a maternal HP diet during foetal life were more prone to adiposity development, in response to postweaning food conditions.


Assuntos
Peso Corporal , Dieta Rica em Proteínas , Preferências Alimentares/fisiologia , Insulina/metabolismo , Nutrientes/administração & dosagem , Efeitos Tardios da Exposição Pré-Natal , Adiposidade/fisiologia , Animais , Composição Corporal , Carboidratos da Dieta/administração & dosagem , Gorduras na Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Ingestão de Energia , Feminino , Leptina/sangue , Fígado/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Gravidez , Ratos , Transdução de Sinais
8.
BMC Genomics ; 9: 374, 2008 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-18681965

RESUMO

BACKGROUND: There is limited knowledge on the extent and dynamics of the mucosal response to commensal and probiotic species in the human intestinal lumen. This study aimed to identify the acute, time-dependent responses of intestinal mucosa to commensal Lactobacillus plantarum WCFS1 in vivo in two placebo-controlled human intervention studies in healthy volunteers. Transcriptional changes in duodenal mucosa upon continuous intraduodenal infusion of L. plantarum WCFS1 for one- and six h, respectively, were studied using oro- and nasogastric intubations with dedicated orogastric catheters and tissue sampling by standard flexible gastroduodenoscopy. RESULTS: One- and six-h exposure of small intestinal mucosa to L. plantarum WCFS1 induced differential expression of 669 and 424 gene reporters, respectively. While short-term exposure to L. plantarum WCFS1 inhibited fatty acid metabolism and cell cycle progression, cells switched to a more proliferative phase after prolonged exposure with an overall expression profile characterized by upregulation of genes involved in lipid metabolism, cellular growth and development. Cell death and immune responses were triggered, but cell death-executing genes or inflammatory signals were not expressed. Proteome analysis showed differential expression of several proteins. Only the microsomal protein 'microsomal triglyceride transfer protein' was regulated on both the transcriptional and the protein level in all subjects. CONCLUSION: Overall, this study showed that intestinal exposure to L. plantarum WCFS1 induced consistent, time-dependent transcriptional responses in healthy intestinal mucosa. This extensive exploration of the human response to L. plantarum WCFS1 could eventually provide molecular support for specific or probiotic activity of this strain or species, and exemplifies the strength of the applied technology to identify the potential bio-activity of microbes in the human intestine.


Assuntos
Regulação da Expressão Gênica/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Lactobacillus plantarum/fisiologia , Transcrição Gênica , Morte Celular/genética , Proliferação de Células , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Saúde , Humanos , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia , Lipídeos/biossíntese , Lipídeos/genética , Perfusão , Probióticos , Proteômica , Fatores de Transcrição/genética
9.
Nutr Metab (Lond) ; 14: 37, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28616059

RESUMO

BACKGROUND: Previous studies have shown that early life nutrition can modulate the development of white adipose tissue and thereby affect the risk on obesity and metabolic disease later in life. For instance, postnatal feeding with a concept infant milk formula with large, phospholipid coated lipid droplets (Concept, Nuturis®), resulted in reduced adiposity in adult mice. The present study investigated whether differences in cell energy metabolism, using markers of mitochondrial content and capacity, may contribute to the observed effects. METHODS: C57Bl/6j male mice were exposed to a rodent diet containing the Concept (Concept) or standard (CTRL) infant milk formula from postnatal day 16 until postnatal day 42, followed by a western style diet challenge until postnatal day 98. Markers for mitochondrial content and capacity were analyzed in retroperitoneal white adipose tissue and gene expression of metabolic markers was measured in both retroperitoneal white adipose tissue and muscle tibialis (M. tibialis) at postnatal day 98. RESULTS: In retroperitoneal white adipose tissue, the Concept group showed higher citrate synthase activity and mitochondrial DNA expression compared to the CTRL group (p < 0.05). In addition, protein expression of mitochondrial cytochrome c oxidase subunit I of the oxidative phosphorylation pathway/cascade was increased in the Concept group compared to CTRL (p < 0.05). In the M. tibialis, gene expression of uncoupling protein 3 was higher in the Concept compared to the CTRL group. Other gene and protein expression markers for mitochondrial oxidative capacity were not different between groups. CONCLUSION: Postnatal feeding with large, phospholipid coated lipid droplets generating a different supramolecular structure of dietary lipids enhances adult gene and protein expression of specific mitochondrial oxidative capacity markers, indicative of increased substrate oxidation in white adipose tissue and skeletal muscle. Although functional mitochondrial capacity was not measured, these results may suggest that adaptations in mitochondrial function via early feeding with a more physiological structure of dietary lipids, could underlie the observed beneficial effects on later life adiposity.

10.
Eur J Gastroenterol Hepatol ; 22(9): 1134-40, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20461009

RESUMO

INTRODUCTION: The colonic mucus layer plays an important role in the protection of the intestinal epithelium and mainly consists of mucin glycoproteins (primarily MUC2 in the colon) trefoil factor 3 (TFF3) and secretory IgA. Butyrate is a major end product of fermentation of dietary fibres and is associated with beneficial effects on colonic health. Earlier in-vitro and animal studies showed that butyrate modulates MUC2 and TFF3 expression and mucin secretion, although data from human studies are not yet available. METHODS: Sixteen healthy volunteers and 35 ulcerative colitis (UC) patients in clinical remission self-administered a 60 ml rectal enema containing 100 mmol/l butyrate or placebo once daily for 2 and 3 weeks, respectively. After each treatment, biopsies were taken from the distal sigmoid for quantitative RT-PCR and immunohistochemical analysis of MUC2 and TFF3. In addition, mucosal sections were stained with high iron diamine-alcian blue to distinguish between sialomucins and sulphomucins. To analyse total mucin secretion and secretory IgA concentrations, 24 h faeces were collected during the day before the endoscopic examination. RESULTS: The butyrate intervention did not significantly modulate the expression of MUC2 (fold change: 1.04 and 1.05 in healthy volunteers and ulcerative colitis patients, respectively) or TFF3 (fold change: 0.91 and 0.94 in healthy volunteers and UC patients, respectively). Furthermore, the percentage of sialomucins, mucus secretion and secretory IgA concentrations were not affected by the butyrate intervention in both the groups. CONCLUSION: Butyrate exposure in healthy volunteers and UC patients in remission did not affect the measured parameters of the colonic mucus layer.


Assuntos
Butiratos/administração & dosagem , Colite Ulcerativa/tratamento farmacológico , Colo/efeitos dos fármacos , Enema/métodos , Mucina-2/genética , Peptídeos/genética , Adolescente , Adulto , Idoso , Colite Ulcerativa/fisiopatologia , Colo/fisiologia , Fezes/química , Expressão Gênica/efeitos dos fármacos , Humanos , Imunoglobulina A/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/fisiologia , Pessoa de Meia-Idade , Mucina-2/metabolismo , Peptídeos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sialomucinas/metabolismo , Fator Trefoil-3 , Adulto Jovem
11.
PLoS One ; 4(8): e6759, 2009 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-19707587

RESUMO

BACKGROUND: Fermentation of dietary fiber in the colon results in the production of short chain fatty acids (mainly propionate, butyrate and acetate). Butyrate modulates a wide range of processes, but its mechanism of action is mostly unknown. This study aimed to determine the effects of butyrate on the transcriptional regulation of human colonic mucosa in vivo. METHODOLOGY/PRINCIPAL FINDINGS: Five hundred genes were found to be differentially expressed after a two week daily butyrate administration with enemas. Pathway analysis showed that the butyrate intervention mainly resulted in an increased transcriptional regulation of the pathways representing fatty acid oxidation, electron transport chain and oxidative stress. In addition, several genes associated with epithelial integrity and apoptosis, were found to be differentially expressed after the butyrate intervention. CONCLUSIONS/SIGNIFICANCE: Colonic administration of butyrate in concentrations that can be achieved by consumption of a high-fiber diet enhances the maintenance of colonic homeostasis in healthy subjects, by regulating fatty acid metabolism, electron transport and oxidative stress pathways on the transcriptional level and provide for the first time, detailed molecular insight in the transcriptional response of gut mucosa to butyrate.


Assuntos
Ácido Butírico/farmacologia , Colo/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Sequência de Bases , Colo/metabolismo , Primers do DNA , Humanos , Mucosa Intestinal/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase
12.
Clin Nutr ; 28(1): 88-93, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19108937

RESUMO

BACKGROUND & AIMS: Butyrate, a short-chain fatty acid produced by colonic microbial fermentation of undigested carbohydrates, has been implicated in the maintenance of colonic health. This study evaluates whether butyrate plays a role in oxidative stress in the healthy colonic mucosa. METHODS: A randomized, double blind, cross-over study with 16 healthy volunteers was performed. Treatments consisted of daily rectal administration of a 60 ml enema containing 100 mM sodium butyrate or saline for 2 weeks. After each treatment, a blood sample was taken and mucosal biopsies were obtained from the sigmoid colon. In biopsies, the trolox equivalent antioxidant capacity, activity of glutathione-S-transferase, concentration of uric acid, glutathione (GSH), glutathione disulfide and malondialdehyde, and expression of genes involved in GSH and uric acid metabolism was determined. Secondary outcome parameters were CRP, calprotectin and intestinal fatty acid binding protein in plasma and histological inflammatory scores. RESULTS: Butyrate treatment resulted in significantly higher GSH (p<0.05) and lower uric acid (p<0.01) concentrations compared to placebo. Changes in GSH and uric acid were accompanied by increased and decreased expression, respectively, of their rate limiting enzymes determined by RT-PCR. No significant differences were found in other parameters. CONCLUSIONS: This study demonstrated that butyrate is able to beneficially affect oxidative stress in the healthy human colon.


Assuntos
Butiratos/farmacologia , Colo/efeitos dos fármacos , Glutationa/metabolismo , Mucosa Intestinal/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ácido Úrico/metabolismo , Adolescente , Adulto , Biópsia , Colo/metabolismo , Colo/patologia , Estudos Cross-Over , Método Duplo-Cego , Enema , Feminino , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Substâncias Reativas com Ácido Tiobarbitúrico/análise , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA