RESUMO
We studied the distribution of germline and somatic variants in epilepsy surgery patients with (suspected) malformations of cortical development (MCD) who underwent surgery between 2015 and 2020 at University Medical Center Utrecht (the Netherlands) and pooled our data with four previously published cohort studies. Tissue analysis yielded a pathogenic variant in 203 of 663 (31%) combined cases. In 126 of 379 (33%) focal cortical dysplasia (FCD) type II cases and 23 of 37 (62%) hemimegalencephaly cases, a pathogenic variant was identified, mostly involving the mTOR signaling pathway. Pathogenic variants in 10 focal epilepsy genes were found in 48 of 178 (27%) FCDI/mild MCD/mMCD with oligodendroglial hyperplasia and epilepsy cases; 36 of these (75%) were SLC35A2 variants. Six of 69 (9%) patients without a histopathological lesion had a pathogenic variant in SLC35A2 (n = 5) or DEPDC5 (n = 1). A germline variant in blood DNA was confirmed in all cases with a pathogenic variant in tissue, with a variant allele frequency (VAF) of ~50%. In seven of 114 patients (6%) with a somatic variant in tissue, mosaicism in blood was detected. More than half of pathogenic somatic variants had a VAF < 5%. Further analysis of the correlation between genetic variants and surgical outcomes will improve patient counseling and may guide postoperative treatment decisions.
RESUMO
Dravet syndrome is an archetypal rare severe epilepsy, considered 'monogenic', typically caused by loss-of-function SCN1A variants. Despite a recognizable core phenotype, its marked phenotypic heterogeneity is incompletely explained by differences in the causal SCN1A variant or clinical factors. In 34 adults with SCN1A-related Dravet syndrome, we show additional genomic variation beyond SCN1A contributes to phenotype and its diversity, with an excess of rare variants in epilepsy-related genes as a set and examples of blended phenotypes, including one individual with an ultra-rare DEPDC5 variant and focal cortical dysplasia. The polygenic risk score for intelligence was lower, and for longevity, higher, in Dravet syndrome than in epilepsy controls. The causal, major-effect, SCN1A variant may need to act against a broadly compromised genomic background to generate the full Dravet syndrome phenotype, whilst genomic resilience may help to ameliorate the risk of premature mortality in adult Dravet syndrome survivors.
Assuntos
Epilepsias Mioclônicas , Epilepsia , Humanos , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Epilepsias Mioclônicas/genética , Epilepsia/genética , Fenótipo , GenômicaRESUMO
Focal and generalized epilepsies are associated with robust differences in magnetic resonance imaging (MRI) measures of subcortical structures, gray matter, and white matter. However, it is unknown whether such structural brain differences reflect the cause or consequence of epilepsy or its treatment. Analyses of common genetic variants underlying both common epilepsy risk and variability in structural brain measures can give further insights, as such inherited variants are not influenced by disease or treatment. Here, we performed genetic correlation analyses using data from the largest genome-wide association study (GWAS) on common epilepsy (n = 27 559 cases and 42 436 controls) and GWASs on MRI measures of white (n = 33 292) or gray matter (n = 51 665). We did not detect any significant genetic correlation between any type of common epilepsy and any of 280 measures of gray matter, white matter, or subcortical structures. These results suggest that there are distinct genetic bases underlying risk of common epilepsy and for structural brain measures. This would imply that the genetic basis of normal structural brain variation is unrelated to that of common epilepsy. Structural changes in epilepsy could rather be the consequence of epilepsy, its comorbidities, or its treatment, offering a cumulative record of disease.
Assuntos
Epilepsia Generalizada , Epilepsia , Substância Branca , Humanos , Estudo de Associação Genômica Ampla , Epilepsia/diagnóstico por imagem , Epilepsia/genética , Epilepsia/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Epilepsia Generalizada/diagnóstico por imagem , Epilepsia Generalizada/genética , Epilepsia Generalizada/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologiaRESUMO
KBTBD13 variants cause nemaline myopathy type 6 (NEM6). The majority of NEM6 patients harbors the Dutch founder variant, c.1222C>T, p.Arg408Cys (KBTBD13 p.R408C). Although KBTBD13 is expressed in cardiac muscle, cardiac involvement in NEM6 is unknown. Here, we constructed pedigrees of three families with the KBTBD13 p.R408C variant. In 65 evaluated patients, 12% presented with left ventricle dilatation, 29% with left ventricular ejection fraction< 50%, 8% with atrial fibrillation, 9% with ventricular tachycardia, and 20% with repolarization abnormalities. Five patients received an implantable cardioverter defibrillator, three cases of sudden cardiac death were reported. Linkage analysis confirmed cosegregation of the KBTBD13 p.R408C variant with the cardiac phenotype. Mouse studies revealed that (1) mice harboring the Kbtbd13 p.R408C variant display mild diastolic dysfunction; (2) Kbtbd13-deficient mice have systolic dysfunction. Hence, (1) KBTBD13 is associated with cardiac dysfunction and cardiomyopathy; (2) KBTBD13 should be added to the cardiomyopathy gene panel; (3) NEM6 patients should be referred to the cardiologist.
Assuntos
Cardiomiopatias , Proteínas Musculares , Animais , Humanos , Camundongos , Arritmias Cardíacas , Cardiomiopatias/genética , Morte Súbita Cardíaca/etiologia , Desfibriladores Implantáveis , Proteínas Musculares/genética , Volume Sistólico/fisiologia , Função Ventricular EsquerdaRESUMO
OBJECTIVE: Levetiracetam (LEV) is an effective antiseizure medicine, but 10%-20% of people treated with LEV report psychiatric side-effects, and up to 1% may have psychotic episodes. Pharmacogenomic predictors of these adverse drug reactions (ADRs) have yet to be identified. We sought to determine the contribution of both common and rare genetic variation to psychiatric and behavioral ADRs associated with LEV. METHODS: This case-control study compared cases of LEV-associated behavioral disorder (n = 149) or psychotic reaction (n = 37) to LEV-exposed people with no history of psychiatric ADRs (n = 920). All samples were of European ancestry. We performed genome-wide association study (GWAS) analysis comparing those with LEV ADRs to controls. We estimated the polygenic risk scores (PRS) for schizophrenia and compared cases with LEV-associated psychotic reaction to controls. Rare variant burden analysis was performed using exome sequence data of cases with psychotic reactions (n = 18) and controls (n = 122). RESULTS: Univariate GWAS found no significant associations with either LEV-associated behavioural disorder or LEV-psychotic reaction. PRS analysis showed that cases of LEV-associated psychotic reaction had an increased PRS for schizophrenia relative to contr ols (p = .0097, estimate = .4886). The rare-variant analysis found no evidence of an increased burden of rare genetic variants in people who had experienced LEV-associated psychotic reaction relative to controls. SIGNIFICANCE: The polygenic burden for schizophrenia is a risk factor for LEV-associated psychotic reaction. To assess the clinical utility of PRS as a predictor, it should be tested in an independent and ideally prospective cohort. Larger sample sizes are required for the identification of significant univariate common genetic signals or rare genetic signals associated with psychiatric LEV ADRs.
Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Estudo de Associação Genômica Ampla , Anticonvulsivantes/efeitos adversos , Estudos de Casos e Controles , Predisposição Genética para Doença/genética , Humanos , Levetiracetam/efeitos adversos , Farmacogenética , Estudos ProspectivosRESUMO
PURPOSE: Pathogenic variants in the X-linked gene NEXMIF (previously KIAA2022) are associated with intellectual disability (ID), autism spectrum disorder, and epilepsy. We aimed to delineate the female and male phenotypic spectrum of NEXMIF encephalopathy. METHODS: Through an international collaboration, we analyzed the phenotypes and genotypes of 87 patients with NEXMIF encephalopathy. RESULTS: Sixty-three females and 24 males (46 new patients) with NEXMIF encephalopathy were studied, with 30 novel variants. Phenotypic features included developmental delay/ID in 86/87 (99%), seizures in 71/86 (83%) and multiple comorbidities. Generalized seizures predominated including myoclonic seizures and absence seizures (both 46/70, 66%), absence with eyelid myoclonia (17/70, 24%), and atonic seizures (30/70, 43%). Males had more severe developmental impairment; females had epilepsy more frequently, and varied from unaffected to severely affected. All NEXMIF pathogenic variants led to a premature stop codon or were deleterious structural variants. Most arose de novo, although X-linked segregation occurred for both sexes. Somatic mosaicism occurred in two males and a family with suspected parental mosaicism. CONCLUSION: NEXMIF encephalopathy is an X-linked, generalized developmental and epileptic encephalopathy characterized by myoclonic-atonic epilepsy overlapping with eyelid myoclonia with absence. Some patients have developmental encephalopathy without epilepsy. Males have more severe developmental impairment. NEXMIF encephalopathy arises due to loss-of-function variants.
Assuntos
Transtorno do Espectro Autista , Encefalopatias , Epilepsia , Transtorno do Espectro Autista/genética , Encefalopatias/genética , Epilepsia/genética , Feminino , Genes Ligados ao Cromossomo X/genética , Humanos , Masculino , Proteínas do Tecido Nervoso , Convulsões/genéticaRESUMO
OBJECTIVE: The mechanisms by which antiepileptic drugs (AEDs) cause birth defects (BDs) are unknown. Data suggest that AED-induced BDs may result from a genome-wide increase of de novo variants in the embryo, a mechanism that we investigated. METHODS: Whole exome sequencing data from child-parent trios were interrogated for de novo single-nucleotide variants/indels (dnSNVs/indels) and de novo copy number variants (dnCNVs). Generalized linear models were applied to assess de novo variant burdens in children exposed prenatally to AEDs (AED-exposed children) versus children without BDs not exposed prenatally to AEDs (AED-unexposed unaffected children), and AED-exposed children with BDs versus those without BDs, adjusting for confounders. Fisher exact test was used to compare categorical data. RESULTS: Sixty-seven child-parent trios were included: 10 with AED-exposed children with BDs, 46 with AED-exposed unaffected children, and 11 with AED-unexposed unaffected children. The dnSNV/indel burden did not differ between AED-exposed children and AED-unexposed unaffected children (median dnSNV/indel number/child [range] = 3 [0-7] vs 3 [1-5], p = 0.50). Among AED-exposed children, there were no significant differences between those with BDs and those unaffected. Likely deleterious dnSNVs/indels were detected in 9 of 67 (13%) children, none of whom had BDs. The proportion of cases harboring likely deleterious dnSNVs/indels did not differ significantly between AED-unexposed and AED-exposed children. The dnCNV burden was not associated with AED exposure or birth outcome. INTERPRETATION: Our study indicates that prenatal AED exposure does not increase the burden of de novo variants, and that this mechanism is not a major contributor to AED-induced BDs. These results can be incorporated in routine patient counseling. ANN NEUROL 2020;87:897-906.
Assuntos
Anormalidades Induzidas por Medicamentos/genética , Anticonvulsivantes/efeitos adversos , Carga Genética , Variação Genética/genética , Teratogênicos , Anormalidades Induzidas por Medicamentos/epidemiologia , Adulto , DNA/genética , Variações do Número de Cópias de DNA/genética , Exoma/genética , Feminino , Humanos , Recém-Nascido , Masculino , Idade Paterna , Polimorfismo de Nucleotídeo Único/genética , GravidezRESUMO
OBJECTIVE: To ascertain whether adverse effects experienced by people taking carbamazepine or oxcarbazepine could be attributed to carbamazepine- or oxcarbazepine-induced hyponatremia (COIH). METHODS: We performed an observational study, collecting data between 2017 and 2019 on serum sodium levels and adverse effects retrospectively in people with epilepsy while receiving treatment with either carbamazepine (CBZ) or oxcarbazepine (OXC). We defined hyponatremia as sodium level ≤134 mEq/L and severe hyponatremia as sodium level ≤128 mEq/L. Adverse effects experienced were compared between groups of individuals with and without hyponatremia. RESULTS: A total of 1370 people using CBZ or OXC were identified, of whom 410 had at least one episode of hyponatremia. We checked for symptoms related to the use of CBZ and OXC in 710 people (410 with and 300 without hyponatremia) and found relevant information in 688. Adverse effects occurred in 65% of people with hyponatremia compared to 21% with normal sodium levels (odds ratio [OR] 7.5, P ≤ .001) and in 83% of people with severe hyponatremia compared to 55% in those with mild hyponatremia (P ≤ .001). Significant predictors of adverse effects were the drug (OXC vs CBZ), and the number of concomitant anti-seizure medications. Dizziness (28% vs 6%), tiredness (22% vs 7%), instability (19% vs 3%), and diplopia (16% vs 4%) were reported more often in the hyponatremia group than in patients with normal levels. SIGNIFICANCE: People with COIH had a 7-fold increased risk of developing adverse effects during treatment. Clinicians should consider ascertainment of sodium levels in patients taking CBZ and OXC and act upon findings.
Assuntos
Anticonvulsivantes/efeitos adversos , Carbamazepina/efeitos adversos , Epilepsia/tratamento farmacológico , Hiponatremia/induzido quimicamente , Oxcarbazepina/efeitos adversos , Adulto , Anticonvulsivantes/uso terapêutico , Carbamazepina/uso terapêutico , Tontura/induzido quimicamente , Tontura/etiologia , Fadiga/induzido quimicamente , Fadiga/etiologia , Feminino , Humanos , Hiponatremia/sangue , Hiponatremia/complicações , Masculino , Pessoa de Meia-Idade , Oxcarbazepina/uso terapêutico , Estudos Retrospectivos , Sódio/sangueRESUMO
OBJECTIVE: Paroxysmal epileptiform abnormalities on electroencephalography (EEG) are the hallmark of epilepsies, but it is uncertain to what extent epilepsy and background EEG oscillations share neurobiological underpinnings. Here, we aimed to assess the genetic correlation between epilepsy and background EEG oscillations. METHODS: Confounding factors, including the heterogeneous etiology of epilepsies and medication effects, hamper studies on background brain activity in people with epilepsy. To overcome this limitation, we compared genetic data from a genome-wide association study (GWAS) on epilepsy (n = 12 803 people with epilepsy and 24 218 controls) with that from a GWAS on background EEG (n = 8425 subjects without epilepsy), in which background EEG oscillation power was quantified in four different frequency bands: alpha, beta, delta, and theta. We replicated our findings in an independent epilepsy replication dataset (n = 4851 people with epilepsy and 20 428 controls). To assess the genetic overlap between these phenotypes, we performed genetic correlation analyses using linkage disequilibrium score regression, polygenic risk scores, and Mendelian randomization analyses. RESULTS: Our analyses show strong genetic correlations of genetic generalized epilepsy (GGE) with background EEG oscillations, primarily in the beta frequency band. Furthermore, we show that subjects with higher beta and theta polygenic risk scores have a significantly higher risk of having generalized epilepsy. Mendelian randomization analyses suggest a causal effect of GGE genetic liability on beta oscillations. SIGNIFICANCE: Our results point to shared biological mechanisms underlying background EEG oscillations and the susceptibility for GGE, opening avenues to investigate the clinical utility of background EEG oscillations in the diagnostic workup of epilepsy.
Assuntos
Eletroencefalografia , Epilepsia Generalizada/genética , Epilepsia Generalizada/fisiopatologia , Adulto , Algoritmos , Ritmo beta/genética , Estudos de Coortes , Bases de Dados Factuais , Epilepsia Generalizada/diagnóstico , Estudo de Associação Genômica Ampla , Humanos , Desequilíbrio de Ligação , Análise da Randomização Mendeliana , Medição de Risco , Ritmo Teta/genéticaRESUMO
Heterozygous de novo variants in the eukaryotic elongation factor EEF1A2 have previously been described in association with intellectual disability and epilepsy but never functionally validated. Here we report 14 new individuals with heterozygous EEF1A2 variants. We functionally validate multiple variants as protein-damaging using heterologous expression and complementation analysis. Our findings allow us to confirm multiple variants as pathogenic and broaden the phenotypic spectrum to include dystonia/choreoathetosis, and in some cases a degenerative course with cerebral and cerebellar atrophy. Pathogenic variants appear to act via a haploinsufficiency mechanism, disrupting both the protein synthesis and integrated stress response functions of EEF1A2. Our studies provide evidence that EEF1A2 is highly intolerant to variation and that de novo pathogenic variants lead to an epileptic-dyskinetic encephalopathy with both neurodevelopmental and neurodegenerative features. Developmental features may be driven by impaired synaptic protein synthesis during early brain development while progressive symptoms may be linked to an impaired ability to handle cytotoxic stressors.
Assuntos
Epilepsia Generalizada/genética , Mutação de Sentido Incorreto , Fator 1 de Elongação de Peptídeos/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Teste de Complementação Genética , Haploinsuficiência , Heterozigoto , Humanos , Masculino , Estrutura Terciária de ProteínaRESUMO
AIMS/HYPOTHESIS: Heterogeneity in individuals with type 1 diabetes has become more generally appreciated, but has not yet been extensively and systematically characterised. Here, we aimed to characterise type 1 diabetes heterogeneity by creating immunological, genetic and clinical profiles for individuals with juvenile-onset type 1 diabetes in a cross-sectional study. METHODS: Participants were HLA-genotyped to determine HLA-DR-DQ risk, and SNP-genotyped to generate a non-HLA genetic risk score (GRS) based on 93 type 1 diabetes-associated SNP variants outside the MHC region. Islet autoimmunity was assessed as T cell proliferation upon stimulation with the beta cell antigens GAD65, islet antigen-2 (IA-2), preproinsulin (PPI) and defective ribosomal product of the insulin gene (INS-DRIP). Clinical parameters were collected retrospectively. RESULTS: Of 80 individuals, 67 had proliferation responses to one or more islet antigens, with vast differences in the extent of proliferation. Based on the multitude and amplitude of the proliferation responses, individuals were clustered into non-, intermediate and high responders. High responders could not be characterised entirely by enrichment for the highest risk HLA-DR3-DQ2/DR4-DQ8 genotype. However, high responders did have a significantly higher non-HLA GRS. Clinically, high T cell responses to beta cell antigens did not reflect in worsened glycaemic control, increased complications, development of associated autoimmunity or younger age at disease onset. The number of beta cell antigens that an individual responded to increased with disease duration, pointing to chronic islet autoimmunity and epitope spreading. CONCLUSIONS/INTERPRETATION: Collectively, these data provide new insights into type 1 diabetes disease heterogeneity and highlight the importance of stratifying patients on the basis of their genetic and autoimmune signatures for immunotherapy and personalised disease management.
Assuntos
Autoimunidade/fisiologia , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/metabolismo , Adolescente , Adulto , Autoimunidade/genética , Proliferação de Células/genética , Proliferação de Células/fisiologia , Criança , Pré-Escolar , Estudos Transversais , Diabetes Mellitus Tipo 1/genética , Feminino , Genótipo , Antígenos HLA-DQ/metabolismo , Antígenos HLA-DR/metabolismo , Humanos , Insulina/metabolismo , Masculino , Análise de Componente Principal , Precursores de Proteínas/metabolismo , Estudos Retrospectivos , Linfócitos T/metabolismo , Adulto JovemRESUMO
Birdshot Uveitis (Birdshot) is a rare eye condition that affects HLA-A29-positive individuals and could be considered a prototypic member of the recently proposed 'MHC-I (major histocompatibility complex class I)-opathy' family. Genetic studies have pinpointed the endoplasmic reticulum aminopeptidase (ERAP1) and (ERAP2) genes as shared associations across MHC-I-opathies, which suggests ERAP dysfunction may be a root cause for MHC-I-opathies. We mapped the ERAP1 and ERAP2 haplotypes in 84 Dutch cases and 890 controls. We identified association at variant rs10044354, which mediated a marked increase in ERAP2 expression. We also identified and cloned an independently associated ERAP1 haplotype (tagged by rs2287987) present in more than half of the cases; this ERAP1 haplotype is also the primary risk and protective haplotype for other MHC-I-opathies. We show that the risk ERAP1 haplotype conferred significantly altered expression of ERAP1 isoforms in transcriptomic data (n = 360), resulting in lowered protein expression and distinct enzymatic activity. Both the association for rs10044354 (meta-analysis: odds ratio (OR) [95% CI]=2.07[1.58-2.71], P = 1.24 × 10(-7)) and rs2287987 (OR[95% CI]: =2.01[1.51-2.67], P = 1.41 × 10(-6)) replicated and showed consistent direction of effect in an independent Spanish cohort of 46 cases and 2103 controls. In both cohorts, the combined rs2287987-rs10044354 haplotype associated with Birdshot more strongly than either variant alone [meta-analysis: P=3.9 × 10(-9)]. Finally, we observed that ERAP2 protein expression is dependent on the ERAP1 background across three European populations (n = 3353). In conclusion, a functionally distinct combination of ERAP1 and ERAP2 are a hallmark of Birdshot and provide rationale for strategies designed to correct ERAP function for treatment of Birdshot and MHC-I-opathies more broadly.
Assuntos
Aminopeptidases/genética , Predisposição Genética para Doença , Antígenos de Histocompatibilidade Menor/genética , Uveíte/genética , Feminino , Estudos de Associação Genética , Genótipo , Antígenos HLA-A/genética , Antígenos HLA-A/imunologia , Haplótipos/genética , Humanos , Masculino , Locos Secundários de Histocompatibilidade/genética , Polimorfismo de Nucleotídeo Único/genética , Uveíte/imunologia , Uveíte/patologiaRESUMO
Giant cell arteritis (GCA) is the most common form of vasculitis in individuals older than 50 years in Western countries. To shed light onto the genetic background influencing susceptibility for GCA, we performed a genome-wide association screening in a well-powered study cohort. After imputation, 1,844,133 genetic variants were analyzed in 2,134 case subjects and 9,125 unaffected individuals from ten independent populations of European ancestry. Our data confirmed HLA class II as the strongest associated region (independent signals: rs9268905, p = 1.94 × 10-54, per-allele OR = 1.79; and rs9275592, p = 1.14 × 10-40, OR = 2.08). Additionally, PLG and P4HA2 were identified as GCA risk genes at the genome-wide level of significance (rs4252134, p = 1.23 × 10-10, OR = 1.28; and rs128738, p = 4.60 × 10-9, OR = 1.32, respectively). Interestingly, we observed that the association peaks overlapped with different regulatory elements related to cell types and tissues involved in the pathophysiology of GCA. PLG and P4HA2 are involved in vascular remodelling and angiogenesis, suggesting a high relevance of these processes for the pathogenic mechanisms underlying this type of vasculitis.
Assuntos
Alelos , Predisposição Genética para Doença/genética , Variação Genética , Estudo de Associação Genômica Ampla , Arterite de Células Gigantes/genética , Plasminogênio/genética , Prolil Hidroxilases/genética , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Europa (Continente)/etnologia , Feminino , Humanos , Masculino , Neovascularização Fisiológica , Polimorfismo de Nucleotídeo Único/genética , RiscoRESUMO
PURPOSE: This study characterizes the clinical and genetic features of nine unrelated patients with de novo variants in the NR4A2 gene. METHODS: Variants were identified and de novo origins were confirmed through trio exome sequencing in all but one patient. Targeted RNA sequencing was performed for one variant to confirm its splicing effect. Independent discoveries were shared through GeneMatcher. RESULTS: Missense and loss-of-function variants in NR4A2 were identified in patients from eight unrelated families. One patient carried a larger deletion including adjacent genes. The cases presented with developmental delay, hypotonia (six cases), and epilepsy (six cases). De novo status was confirmed for eight patients. One variant was demonstrated to affect splicing and result in expression of abnormal transcripts likely subject to nonsense-mediated decay. CONCLUSION: Our study underscores the importance of NR4A2 as a disease gene for neurodevelopmental disorders and epilepsy. The identified variants are likely causative of the seizures and additional developmental phenotypes in these patients.
Assuntos
Epilepsia , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Epilepsia/genética , Humanos , Deficiência Intelectual/genética , Hipotonia Muscular , Transtornos do Neurodesenvolvimento/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares , Fenótipo , Sequenciamento do ExomaRESUMO
OBJECTIVE: Drug resistance is a major concern in the treatment of individuals with epilepsy. No genetic markers for resistance to individual antiseizure medication (ASM) have yet been identified. We aimed to identify the role of rare genetic variants in drug resistance for three common ASMs: levetiracetam (LEV), lamotrigine (LTG), and valproic acid (VPA). METHODS: A cohort of 1622 individuals of European descent with epilepsy was deeply phenotyped and underwent whole exome sequencing (WES), comprising 575 taking LEV, 826 LTG, and 782 VPA. We performed gene- and gene set-based collapsing analyses comparing responders and nonresponders to the three drugs to determine the burden of different categories of rare genetic variants. RESULTS: We observed a marginally significant enrichment of rare missense, truncating, and splice region variants in individuals who were resistant to VPA compared to VPA responders for genes involved in VPA pharmacokinetics. We also found a borderline significant enrichment of truncating and splice region variants in the synaptic vesicle glycoprotein (SV2) gene family in nonresponders compared to responders to LEV. We did not see any significant enrichment using a gene-based approach. SIGNIFICANCE: In our pharmacogenetic study, we identified a slightly increased burden of damaging variants in gene groups related to drug kinetics or targeting in individuals presenting with drug resistance to VPA or LEV. Such variants could thus determine a genetic contribution to drug resistance.
Assuntos
Anticonvulsivantes/uso terapêutico , Resistência a Medicamentos/genética , Epilepsia/tratamento farmacológico , Epilepsia/genética , Variantes Farmacogenômicos/genética , Estudos de Casos e Controles , Feminino , Genótipo , Humanos , Lamotrigina/uso terapêutico , Levetiracetam/uso terapêutico , Masculino , Ácido Valproico/uso terapêuticoRESUMO
Rare genetic variants can cause epilepsy, and genetic testing has been widely adopted for severe, paediatric-onset epilepsies. The phenotypic consequences of common genetic risk burden for epilepsies and their potential future clinical applications have not yet been determined. Using polygenic risk scores (PRS) from a European-ancestry genome-wide association study in generalized and focal epilepsy, we quantified common genetic burden in patients with generalized epilepsy (GE-PRS) or focal epilepsy (FE-PRS) from two independent non-Finnish European cohorts (Epi25 Consortium, n = 5705; Cleveland Clinic Epilepsy Center, n = 620; both compared to 20 435 controls). One Finnish-ancestry population isolate (Finnish-ancestry Epi25, n = 449; compared to 1559 controls), two European-ancestry biobanks (UK Biobank, n = 383 656; Vanderbilt biorepository, n = 49 494), and one Japanese-ancestry biobank (BioBank Japan, n = 168 680) were used for additional replications. Across 8386 patients with epilepsy and 622 212 population controls, we found and replicated significantly higher GE-PRS in patients with generalized epilepsy of European-ancestry compared to patients with focal epilepsy (Epi25: P = 1.64×10-15; Cleveland: P = 2.85×10-4; Finnish-ancestry Epi25: P = 1.80×10-4) or population controls (Epi25: P = 2.35×10-70; Cleveland: P = 1.43×10-7; Finnish-ancestry Epi25: P = 3.11×10-4; UK Biobank and Vanderbilt biorepository meta-analysis: P = 7.99×10-4). FE-PRS were significantly higher in patients with focal epilepsy compared to controls in the non-Finnish, non-biobank cohorts (Epi25: P = 5.74×10-19; Cleveland: P = 1.69×10-6). European ancestry-derived PRS did not predict generalized epilepsy or focal epilepsy in Japanese-ancestry individuals. Finally, we observed a significant 4.6-fold and a 4.5-fold enrichment of patients with generalized epilepsy compared to controls in the top 0.5% highest GE-PRS of the two non-Finnish European cohorts (Epi25: P = 2.60×10-15; Cleveland: P = 1.39×10-2). We conclude that common variant risk associated with epilepsy is significantly enriched in multiple cohorts of patients with epilepsy compared to controls-in particular for generalized epilepsy. As sample sizes and PRS accuracy continue to increase with further common variant discovery, PRS could complement established clinical biomarkers and augment genetic testing for patient classification, comorbidity research, and potentially targeted treatment.
Assuntos
Epilepsias Parciais/genética , Epilepsia Generalizada/genética , Herança Multifatorial/genética , Estudos de Coortes , Efeitos Psicossociais da Doença , Bases de Dados Factuais , Feminino , Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética , População BrancaRESUMO
BACKGROUND: Dravet syndrome is a severe genetic encephalopathy, caused by pathogenic variants in SCN1A. Low-grade parental mosaicism occurs in a substantial proportion of families (7%-13%) and has important implications for recurrence risks. However, parental mosaicism can remain undetected by methods regularly used in diagnostics. In this study, we use single-molecule molecular inversion probes (smMIP), a technique with high sensitivity for detecting low-grade mosaic variants and high cost-effectiveness, to investigate the incidence of parental mosaicism of SCN1A variants in a cohort of 90 families and assess the feasibility of this technique. METHODS: Deep sequencing of SCN1A was performed using smMIPs. False positive rates for each of the proband's pathogenic variants were determined in 145 unrelated samples. If parents showed corresponding variant alleles at a significantly higher rate than the established noise ratio, mosaicism was confirmed by droplet digital PCR (ddPCR). RESULTS: Sequence coverage of at least 100× at the location of the corresponding pathogenic variant was reached for 80 parent couples. The variant ratio was significantly higher than the established noise ratio in eight parent couples, of which four (5%) were regarded as true mosaics, based on ddPCR results. The false positive rate of smMIP analysis without ddPCR was therefore 50%. Three of these variants had previously been considered de novo in the proband by Sanger sequencing. CONCLUSION: smMIP technology combined withnext generation sequencing (NGS) performs better than Sanger sequencing in the detection of parental mosaicism. Because parental mosaicism has important implications for genetic counselling and recurrence risks, we stress the importance of implementing high-sensitivity NGS-based assays in standard diagnostics.
Assuntos
Epilepsia/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mosaicismo , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Epilepsias Mioclônicas/genética , Feminino , Humanos , Masculino , Sondas Moleculares , Linhagem , Reação em Cadeia da Polimerase/métodosRESUMO
PURPOSE: Differentiating between Dravet syndrome and non-Dravet SCN1A-related phenotypes is important for prognosis regarding epilepsy severity, cognitive development, and comorbidities. When a child is diagnosed with genetic epilepsy with febrile seizures plus (GEFS+) or febrile seizures (FS), accurate prognostic information is essential as well, but detailed information on seizure course, seizure freedom, medication use, and comorbidities is lacking for this milder patient group. In this cross-sectional study, we explore disease characteristics in milder SCN1A-related phenotypes and the nature, occurrence, and relationships of SCN1A-related comorbidities in both patients with Dravet and non-Dravet syndromes. METHODS: A cohort of 164 Dutch participants with SCN1A-related seizures was evaluated, consisting of 116 patients with Dravet syndrome and 48 patients with either GEFS+, febrile seizures plus (FS+), or FS. Clinical data were collected from medical records, semi-structured telephone interviews, and three questionnaires: the Functional Mobility Scale (FMS), the Pediatric Quality of Life Inventory (PedsQL) Measurement Model, and the Child or Adult Behavior Checklists (CBCL/ABCL). RESULTS: Walking disabilities and severe behavioral problems affect 71% and 43% of patients with Dravet syndrome respectively and are almost never present in patients with non-Dravet syndromes. These comorbidities are strongly correlated to lower quality-of-life (QoL) scores. Less severe comorbidities occur in patients with non-Dravet syndromes: learning problems and psychological/behavioral problems are reported for 27% and 38% respectively. The average QoL score of the non-Dravet group was comparable with that of the general population. The majority of patients with non-Dravet syndromes becomes seizure-free after 10â¯years of age (85%). CONCLUSIONS: Severe behavioral problems and walking disabilities are common in patients with Dravet syndrome and should receive specific attention during clinical management. Although the epilepsy course of patients with non-Dravet syndromes is much more favorable, milder comorbidities frequently occur in this group as well. Our results may be of great value for clinical care and informing newly diagnosed patients and their parents about prognosis.
Assuntos
Epilepsias Mioclônicas/epidemiologia , Epilepsias Mioclônicas/genética , Epilepsia/epidemiologia , Epilepsia/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Estudos de Coortes , Comorbidade , Estudos Transversais , Epilepsias Mioclônicas/diagnóstico , Epilepsia/diagnóstico , Síndromes Epilépticas/diagnóstico , Síndromes Epilépticas/epidemiologia , Síndromes Epilépticas/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Qualidade de Vida , Estudos Retrospectivos , Convulsões Febris/diagnóstico , Convulsões Febris/epidemiologia , Convulsões Febris/genética , Espasmos Infantis/diagnóstico , Espasmos Infantis/epidemiologia , Espasmos Infantis/genética , Inquéritos e Questionários , Resultado do Tratamento , Adulto JovemRESUMO
AIMS/HYPOTHESIS: Sphingolipids play important roles in beta cell physiology, by regulating proinsulin folding and insulin secretion and in controlling apoptosis, as studied in animal models and cell cultures. Here we investigate whether sphingolipid metabolism may contribute to the pathogenesis of human type 1 diabetes and whether increasing the levels of the sphingolipid sulfatide would prevent models of diabetes in NOD mice. METHODS: We examined the amount and distribution of sulfatide in human pancreatic islets by immunohistochemistry, immunofluorescence and electron microscopy. Transcriptional analysis was used to evaluate expression of sphingolipid-related genes in isolated human islets. Genome-wide association studies (GWAS) and a T cell proliferation assay were used to identify type 1 diabetes related polymorphisms and test how these affect cellular islet autoimmunity. Finally, we treated NOD mice with fenofibrate, a known activator of sulfatide biosynthesis, to evaluate the effect on experimental autoimmune diabetes development. RESULTS: We found reduced amounts of sulfatide, 23% of the levels in control participants, in pancreatic islets of individuals with newly diagnosed type 1 diabetes, which were associated with reduced expression of enzymes involved in sphingolipid metabolism. Next, we discovered eight gene polymorphisms (ORMDL3, SPHK2, B4GALNT1, SLC1A5, GALC, PPARD, PPARG and B4GALT1) involved in sphingolipid metabolism that contribute to the genetic predisposition to type 1 diabetes. These gene polymorphisms correlated with the degree of cellular islet autoimmunity in a cohort of individuals with type 1 diabetes. Finally, using fenofibrate, which activates sulfatide biosynthesis, we completely prevented diabetes in NOD mice and even reversed the disease in half of otherwise diabetic animals. CONCLUSIONS/INTERPRETATION: These results indicate that islet sphingolipid metabolism is abnormal in type 1 diabetes and suggest that modulation may represent a novel therapeutic approach. DATA AVAILABILITY: The RNA expression data is available online at https://www.dropbox.com/s/93mk5tzl5fdyo6b/Abnormal%20islet%20sphingolipid%20metabolism%20in%20type%201%20diabetes%2C%20RNA%20expression.xlsx?dl=0 . A list of SNPs identified is available at https://www.dropbox.com/s/yfojma9xanpp2ju/Abnormal%20islet%20sphingolipid%20metabolism%20in%20type%201%20diabetes%20SNP.xlsx?dl=0 .
Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Ilhotas Pancreáticas/metabolismo , Sulfoglicoesfingolipídeos/metabolismo , Adulto , Animais , Autoimunidade , Estudos de Casos e Controles , Proliferação de Células , Células Cultivadas , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/prevenção & controle , Modelos Animais de Doenças , Feminino , Fenofibrato/farmacologia , Regulação Enzimológica da Expressão Gênica , Humanos , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/ultraestrutura , Metabolismo dos Lipídeos/genética , Ativação Linfocitária , Masculino , Camundongos Endogâmicos NOD , Polimorfismo Genético , Linfócitos T/imunologia , Linfócitos T/metabolismoRESUMO
OBJECTIVE: Pathogenic variants in SCN1A can give rise to extremely variable disease severities that may be indistinguishable at their first presentation. We aim to find clinical features that can help predict the evolution of seizures into Dravet syndrome and clinical features that predict cognitive outcome in Dravet syndrome. We specifically investigate the role of contraindicated medication (CIM) as a possible modifier of cognitive decline. METHODS: A cohort of 164 Dutch participants with SCN1A-related seizures was evaluated. Clinical data were collected from medical records and semistructured telephone interviews. Cognitive function was classified by a child neurologist, neuropsychologist, and clinical geneticist. Several clinical variables, including duration of CIM use in the first 5 years of disease, were evaluated in univariate and multivariate analyses. RESULTS: A longer duration of CIM use in the first 5 years after seizure onset was significantly associated with a worse cognitive outcome at time of inclusion, and with lower interpolated intelligence quotient/developmental quotient scores after the first 5 years of disease in Dravet syndrome patients. CIM use remained a significant predictor for cognitive outcome in a multivariate regression model, as did age at the first observation of developmental delay and age at first afebrile seizure. Age at first afebrile seizure was the most accurate predictor for evolution of seizures into Dravet syndrome for the complete cohort. SIGNIFICANCE: Our data suggest that a longer CIM use in the first 5 years of disease can have negative effects on cognitive outcome in Dravet syndrome. An early diagnosis is essential to avoid these drugs. Furthermore, we identified age at first afebrile seizure as an important predictor for evolution of seizures into Dravet syndrome and for the severity of Dravet syndrome, which can be used to counsel parents of young patients with SCN1A-related seizures.