Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brain Topogr ; 37(2): 271-286, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37410275

RESUMO

EEG microstates represent functional brain networks observable in resting EEG recordings that remain stable for 40-120ms before rapidly switching into another network. It is assumed that microstate characteristics (i.e., durations, occurrences, percentage coverage, and transitions) may serve as neural markers of mental and neurological disorders and psychosocial traits. However, robust data on their retest-reliability are needed to provide the basis for this assumption. Furthermore, researchers currently use different methodological approaches that need to be compared regarding their consistency and suitability to produce reliable results. Based on an extensive dataset largely representative of western societies (2 days with two resting EEG measures each; day one: n = 583; day two: n = 542) we found good to excellent short-term retest-reliability of microstate durations, occurrences, and coverages (average ICCs = 0.874-0.920). There was good overall long-term retest-reliability of these microstate characteristics (average ICCs = 0.671-0.852), even when the interval between measures was longer than half a year, supporting the longstanding notion that microstate durations, occurrences, and coverages represent stable neural traits. Findings were robust across different EEG systems (64 vs. 30 electrodes), recording lengths (3 vs. 2 min), and cognitive states (before vs. after experiment). However, we found poor retest-reliability of transitions. There was good to excellent consistency of microstate characteristics across clustering procedures (except for transitions), and both procedures produced reliable results. Grand-mean fitting yielded more reliable results compared to individual fitting. Overall, these findings provide robust evidence for the reliability of the microstate approach.


Assuntos
Encéfalo , Eletroencefalografia , Humanos , Eletroencefalografia/métodos , Reprodutibilidade dos Testes , Mapeamento Encefálico/métodos , Descanso
2.
Brain Topogr ; 37(2): 265-269, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37450085

RESUMO

EEG microstates are brief, recurring periods of stable brain activity that reflect the activation of large-scale neural networks. The temporal characteristics of these microstates, including their average duration, number of occurrences, and percentage contribution have been shown to serve as biomarkers of mental and neurological disorders. However, little is known about how microstate characteristics of prototypical network types relate to each other. Normative intercorrelations among these parameters are necessary to help researchers better understand the functions and interactions of underlying networks, interpret and relate results, and generate new hypotheses. Here, we present a systematic analysis of intercorrelations between EEG microstate characteristics in a large sample representative of western working populations (n = 583). Notably, we find that microstate duration is a general characteristic that varies across microstate types. Further, microstate A and B show mutual reinforcement, indicating a relationship between auditory and visual sensory processing at rest. Microstate C appears to play a special role, as it is associated with longer durations of all other microstate types and increased global field power, suggesting a relationship of these parameters with the anterior default mode network. All findings could be confirmed using independent EEG recordings from a retest-session (n = 542).


Assuntos
Encéfalo , Eletroencefalografia , Humanos , Encéfalo/fisiologia , Eletroencefalografia/métodos , Percepção Visual , Sensação
3.
Brain Topogr ; 37(2): 169-180, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38349451

RESUMO

The analysis of EEG microstates for investigating rapid whole-brain network dynamics during rest and tasks has become a standard practice in the EEG research community, leading to a substantial increase in publications across various affective, cognitive, social and clinical neuroscience domains. Recognizing the growing significance of this analytical method, the authors aim to provide the microstate research community with a comprehensive discussion on methodological standards, unresolved questions, and the functional relevance of EEG microstates. In August 2022, a conference was hosted in Bern, Switzerland, which brought together many researchers from 19 countries. During the conference, researchers gave scientific presentations and engaged in roundtable discussions aiming at establishing steps toward standardizing EEG microstate analysis methods. Encouraged by the conference's success, a special issue was launched in Brain Topography to compile the current state-of-the-art in EEG microstate research, encompassing methodological advancements, experimental findings, and clinical applications. The call for submissions for the special issue garnered 48 contributions from researchers worldwide, spanning reviews, meta-analyses, tutorials, and experimental studies. Following a rigorous peer-review process, 33 papers were accepted whose findings we will comprehensively discuss in this Editorial.


Assuntos
Mapeamento Encefálico , Encéfalo , Humanos , Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Descanso
4.
Brain Topogr ; 37(2): 181-217, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37162601

RESUMO

A growing body of clinical and cognitive neuroscience studies have adapted a broadband EEG microstate approach to evaluate the electrical activity of large-scale cortical networks. However, the functional aspects of these microstates have not yet been systematically reviewed. Here, we present an overview of the existing literature and systematize the results to provide hints on the functional role of electrical brain microstates. Studies that evaluated and manipulated the temporal properties of resting-state microstates and utilized questionnaires, task-initiated thoughts, specific tasks before or between EEG session(s), pharmacological interventions, neuromodulation approaches, or localized sources of the extracted microstates were selected. Fifty studies that met the inclusion criteria were included. A new microstate labeling system has been proposed for a comprehensible comparison between the studies, where four classical microstates are referred to as A-D, and the others are labeled by the frequency of their appearance. Microstate A was associated with both auditory and visual processing and links to subjects' arousal/arousability. Microstate B showed associations with visual processing related to self, self-visualization, and autobiographical memory. Microstate C was related to processing personally significant information, self-reflection, and self-referential internal mentation rather than autonomic information processing. In contrast, microstate E was related to processing interoceptive and emotional information and to the salience network. Microstate D was associated with executive functioning. Microstate F is suggested to be a part of the Default Mode Network and plays a role in personally significant information processing, mental simulations, and theory of mind. Microstate G is potentially linked to the somatosensory network.


Assuntos
Mapeamento Encefálico , Eletroencefalografia , Humanos , Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Encéfalo/diagnóstico por imagem , Cognição , Percepção Visual
5.
Brain Topogr ; 37(2): 287-295, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-36939988

RESUMO

Electroencephalography (EEG) microstates are short successive periods of stable scalp field potentials representing spontaneous activation of brain resting-state networks. EEG microstates are assumed to mediate local activity patterns. To test this hypothesis, we correlated momentary global EEG microstate dynamics with the local temporo-spectral evolution of electrocorticography (ECoG) and stereotactic EEG (SEEG) depth electrode recordings. We hypothesized that these correlations involve the gamma band. We also hypothesized that the anatomical locations of these correlations would converge with those of previous studies using either combined functional magnetic resonance imaging (fMRI)-EEG or EEG source localization. We analyzed resting-state data (5 min) of simultaneous noninvasive scalp EEG and invasive ECoG and SEEG recordings of two participants. Data were recorded during the presurgical evaluation of pharmacoresistant epilepsy using subdural and intracranial electrodes. After standard preprocessing, we fitted a set of normative microstate template maps to the scalp EEG data. Using covariance mapping with EEG microstate timelines and ECoG/SEEG temporo-spectral evolutions as inputs, we identified systematic changes in the activation of ECoG/SEEG local field potentials in different frequency bands (theta, alpha, beta, and high-gamma) based on the presence of particular microstate classes. We found significant covariation of ECoG/SEEG spectral amplitudes with microstate timelines in all four frequency bands (p = 0.001, permutation test). The covariance patterns of the ECoG/SEEG electrodes during the different microstates of both participants were similar. To our knowledge, this is the first study to demonstrate distinct activation/deactivation patterns of frequency-domain ECoG local field potentials associated with simultaneous EEG microstates.


Assuntos
Mapeamento Encefálico , Eletrocorticografia , Humanos , Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Couro Cabeludo
6.
Brain Topogr ; 37(2): 218-231, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37515678

RESUMO

Over the last decade, EEG resting-state microstate analysis has evolved from a niche existence to a widely used and well-accepted methodology. The rapidly increasing body of empirical findings started to yield overarching patterns of associations of biological and psychological states and traits with specific microstate classes. However, currently, this cross-referencing among apparently similar microstate classes of different studies is typically done by "eyeballing" of printed template maps by the individual authors, lacking a systematic procedure. To improve the reliability and validity of future findings, we present a tool to systematically collect the actual data of template maps from as many published studies as possible and present them in their entirety as a matrix of spatial similarity. The tool also allows importing novel template maps and systematically extracting the findings associated with specific microstate maps from ongoing or published studies. The tool also allows importing novel template maps and systematically extracting the findings associated with specific microstate maps in the literature. The analysis of 40 included sets of template maps indicated that: (i) there is a high degree of similarity of template maps across studies, (ii) similar template maps were associated with converging empirical findings, and (iii) representative meta-microstates can be extracted from the individual studies. We hope that this tool will be useful in coming to a more comprehensive, objective, and overarching representation of microstate findings.


Assuntos
Encéfalo , Eletroencefalografia , Humanos , Reprodutibilidade dos Testes , Olho
7.
Cereb Cortex ; 33(11): 6693-6700, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-36758947

RESUMO

Much research finds that lying takes longer than truth-telling. Yet, the source of this response time difference remains elusive. Here, we assessed the spatiotemporal evolution of electrical brain activity during honesty and dishonesty in 150 participants using a sophisticated electrical neuroimaging approach-the microstate approach. This uniquely positioned us to identify and contrast the entire chain of mental processes involved during honesty and dishonesty. Specifically, we find that the response time difference is the result of an additional late-occurring mental process, unique to dishonest decisions, interrupting the antecedent mental processing. We suggest that this process inhibits the activation of the truth, thus permitting the execution of the lie. These results advance our understanding of dishonesty and clarify existing theories about the role of increased cognitive load. More broadly, we demonstrate the vast potential of our approach to illuminate the temporal organization of mental processes involved in decision-making.


Assuntos
Enganação , Processos Mentais , Humanos , Neuroimagem , Tempo de Reação
8.
Conscious Cogn ; 119: 103667, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38428277

RESUMO

The sense of agency (SoA) is central to human experience. The comparator model, contrasting sensory prediction and action feedback, is influential but limited in explaining SoA. We investigated mechanisms beyond the comparator model, focusing on the processing of unpredictable stimuli, perimotor components of SoA, and their relation to schizotypy. ERPs were recorded from 18 healthy participants engaged in button-pressing tasks while perceiving tones with varying causal relationships with their actions. We investigated the processing of non-causally related tones, contrasted this to causally related tones, and examined perimotor correlates of subjective expectancy and experience of agency. We confirmed N100 attenuation for self-generated stimuli but found similar effects for expectancy-dependent processing of random tones. SoA also correlated with perimotor ERP components, modulated by schizotypy. Thus, neural processes preceding actions contribute to the formation of SoA and are associated with schizotypy. Unpredictable events also undergo sensory attenuation, implying additional mechanisms contributing to SoA.


Assuntos
Potenciais Evocados , Motivação , Humanos , Potenciais Evocados/fisiologia
9.
J Sleep Res ; 32(4): e13846, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36806335

RESUMO

Slow-wave sleep (SWS) is a fundamental physiological process, and its modulation is of interest for basic science and clinical applications. However, automatised protocols for the suppression of SWS are lacking. We describe the development of a novel protocol for the automated detection (based on the whole head topography of frontal slow waves) and suppression of SWS (through closed-loop modulated randomised pulsed noise), and assessed the feasibility, efficacy and functional relevance compared to sham stimulation in 15 healthy young adults in a repeated-measure sleep laboratory study. Auditory compared to sham stimulation resulted in a highly significant reduction of SWS by 30% without affecting total sleep time. The reduction of SWS was associated with an increase in lighter non-rapid eye movement sleep and a shift of slow-wave activity towards the end of the night, indicative of a homeostatic response and functional relevance. Still, cumulative slow-wave activity across the night was significantly reduced by 23%. Undisturbed sleep led to an evening to morning reduction of wake electroencephalographic theta activity, thought to reflect synaptic downscaling during SWS, while suppression of SWS inhibited this dissipation. We provide evidence for the feasibility, efficacy, and functional relevance of a novel fully automated protocol for SWS suppression based on auditory closed-loop stimulation. Future work is needed to further test for functional relevance and potential clinical applications.


Assuntos
Sono de Ondas Lentas , Adulto Jovem , Humanos , Sono de Ondas Lentas/fisiologia , Estudos de Viabilidade , Sono/fisiologia , Polissonografia , Eletroencefalografia/métodos , Estimulação Acústica/métodos
10.
Brain Topogr ; 36(1): 32-41, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36536080

RESUMO

Our knowledge about the human resting state is predominantly based on either electroencephalographic (EEG) or functional magnetic resonance imaging (fMRI) methods. While EEG recordings can be performed in seated posture in quiet conditions, the fMRI environment presents a substantial contrast with supine and restricted posture in a narrow tube that is filled with acoustic scanner noise (ASN) at a chainsaw-like volume level. However, the influence of these diverging conditions on resting-state brain activation is neither well studied nor broadly discussed. In order to promote data as a source of sharper hypotheses for future studies, we investigated alterations in EEG-frequency-band power (delta, theta, alpha, beta, gamma) and spatial power distribution as well as cortical vigilance measures in different postures and ASN surroundings over the course of time. Participants (N = 18) underwent three consecutive resting-state EEG recordings with a fixed posture and ASN setting sequence; seated, supine, and supine with ASN (supnoise) using an MRI simulator. The results showed that compared to seated, supnoise, the last instance within the posture sequence, was characterized by lower power and altered spatial power distribution in all assessed frequency bands. This might also have been an effect of time alone. In delta, theta, alpha, and beta, the power of supnoise was also reduced compared to supine, as well as the corresponding distribution maps. The vigilance analysis revealed that in supine and supnoise, the highest and lowest vigilance stages were more dominant compared to the seated and earliest posture condition within the sequence. Hence, our results demonstrate that the differences in recording settings and progress of time are related to changes in cortical arousal and vigilance regulation, findings that should be taken into account more profoundly for hypothesis generation as well as analytic strategies in future resting-state studies.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Humanos , Mapeamento Encefálico/métodos , Eletroencefalografia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Nível de Alerta/fisiologia
11.
Brain Topogr ; 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697212

RESUMO

Microstate analysis is a multivariate method that enables investigations of the temporal dynamics of large-scale neural networks in EEG recordings of human brain activity. To meet the enormously increasing interest in this approach, we provide a thoroughly updated version of the first open source EEGLAB toolbox for the standardized identification, visualization, and quantification of microstates in resting-state EEG data. The toolbox allows scientists to (i) identify individual, mean, and grand mean microstate maps using topographical clustering approaches, (ii) check data quality and detect outlier maps, (iii) visualize, sort, and label individual, mean, and grand mean microstate maps according to published maps, (iv) compare topographical similarities of group and grand mean microstate maps and quantify shared variances, (v) obtain the temporal dynamics of the microstate classes in individual EEGs, (vi) export quantifications of these temporal dynamics of the microstates for statistical tests, and finally, (vii) test for topographical differences between groups and conditions using topographic analysis of variance (TANOVA). Here, we introduce the toolbox in a step-by-step tutorial, using a sample dataset of 34 resting-state EEG recordings that are publicly available to follow along with this tutorial. The goals of this manuscript are (a) to provide a standardized, freely available toolbox for resting-state microstate analysis to the scientific community, (b) to allow researchers to use best practices for microstate analysis by following a step-by-step tutorial, and (c) to improve the methodological standards of microstate research by providing previously unavailable functions and recommendations on critical decisions required in microstate analyses.

12.
Cereb Cortex ; 32(9): 1978-1992, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-34649280

RESUMO

There is growing evidence showing that the representation of the human "self" recruits special systems across different functions and modalities. Compared to self-face and self-body representations, few studies have investigated neural underpinnings specific to self-voice. Moreover, self-voice stimuli in those studies were consistently presented through air and lacking bone conduction, rendering the sound of self-voice stimuli different to the self-voice heard during natural speech. Here, we combined psychophysics, voice-morphing technology, and high-density EEG in order to identify the spatiotemporal patterns underlying self-other voice discrimination (SOVD) in a population of 26 healthy participants, both with air- and bone-conducted stimuli. We identified a self-voice-specific EEG topographic map occurring around 345 ms post-stimulus and activating a network involving insula, cingulate cortex, and medial temporal lobe structures. Occurrence of this map was modulated both with SOVD task performance and bone conduction. Specifically, the better participants performed at SOVD task, the less frequently they activated this network. In addition, the same network was recruited less frequently with bone conduction, which, accordingly, increased the SOVD task performance. This work could have an important clinical impact. Indeed, it reveals neural correlates of SOVD impairments, believed to account for auditory-verbal hallucinations, a common and highly distressing psychiatric symptom.


Assuntos
Voz , Percepção Auditiva , Eletroencefalografia , Alucinações/psicologia , Humanos , Lobo Temporal
13.
Age Ageing ; 52(12)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38163288

RESUMO

BACKGROUND: Sleep and neurodegeneration are assumed to be locked in a bi-directional vicious cycle. Improving sleep could break this cycle and help to prevent neurodegeneration. We tested multi-night phase-locked acoustic stimulation (PLAS) during slow wave sleep (SWS) as a non-invasive method to improve SWS, memory performance and plasma amyloid levels. METHODS: 32 healthy older adults (agemean: 68.9) completed a between-subject sham-controlled three-night intervention, preceded by a sham-PLAS baseline night. RESULTS: PLAS induced increases in sleep-associated spectral-power bands as well as a 24% increase in slow wave-coupled spindles, known to support memory consolidation. There was no significant group-difference in memory performance or amyloid-beta between the intervention and control group. However, the magnitude of PLAS-induced physiological responses were associated with memory performance up to 3 months post intervention and beneficial changes in plasma amyloid. Results were exclusive to the intervention group. DISCUSSION: Multi-night PLAS is associated with long-lasting benefits in memory and metabolite clearance in older adults, rendering PLAS a promising tool to build upon and develop long-term protocols for the prevention of cognitive decline.


Assuntos
Eletroencefalografia , Consolidação da Memória , Humanos , Idoso , Estimulação Acústica/métodos , Eletroencefalografia/métodos , Sono , Cognição/fisiologia , Consolidação da Memória/fisiologia
14.
Neuroimage ; 256: 119190, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35398285

RESUMO

This paper extends frequency domain quantitative electroencephalography (qEEG) methods pursuing higher sensitivity to detect Brain Developmental Disorders. Prior qEEG work lacked integration of cross-spectral information omitting important functional connectivity descriptors. Lack of geographical diversity precluded accounting for site-specific variance, increasing qEEG nuisance variance. We ameliorate these weaknesses. (i) Create lifespan Riemannian multinational qEEG norms for cross-spectral tensors. These norms result from the HarMNqEEG project fostered by the Global Brain Consortium. We calculate the norms with data from 9 countries, 12 devices, and 14 studies, including 1564 subjects. Instead of raw data, only anonymized metadata and EEG cross-spectral tensors were shared. After visual and automatic quality control, developmental equations for the mean and standard deviation of qEEG traditional and Riemannian DPs were calculated using additive mixed-effects models. We demonstrate qEEG "batch effects" and provide methods to calculate harmonized z-scores. (ii) We also show that harmonized Riemannian norms produce z-scores with increased diagnostic accuracy predicting brain dysfunction produced by malnutrition in the first year of life and detecting COVID induced brain dysfunction. (iii) We offer open code and data to calculate different individual z-scores from the HarMNqEEG dataset. These results contribute to developing bias-free, low-cost neuroimaging technologies applicable in various health settings.


Assuntos
Encefalopatias , COVID-19 , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Eletroencefalografia/métodos , Humanos
15.
Psychol Sci ; 33(12): 2123-2137, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36279561

RESUMO

Self-control-the ability to inhibit inappropriate impulses-predicts economic, physical, and psychological well-being. However, recent findings demonstrate low correlations among self-control measures, raising the question of what self-control actually is. Here, we examined the idea that people high in self-control show more stable mental processing, characterized by processing steps that are fewer in number but longer lasting because of fewer interruptions by distracting impulses. To test this hypothesis, we relied on resting electroencephalography microstate analysis, a method that provides access to the stream of mental processing by assessing the sequential activation of neural networks. Across two samples (Study 1: N = 58 male adults from Germany; Study 2: N = 101 adults from Canada, 58 females), the temporal stability of resting networks (i.e., longer durations and fewer occurrences) was positively associated with self-reported self-control and a neural index of inhibitory control, and it was negatively associated with risk-taking behavior. These findings suggest that stable mental processing represents a core feature of a self-controlled mind.


Assuntos
Encéfalo , Autocontrole , Adulto , Feminino , Masculino , Humanos , Encéfalo/fisiologia , Eletroencefalografia/métodos , Descanso/fisiologia , Processos Mentais , Mapeamento Encefálico/métodos
16.
J Sleep Res ; 31(6): e13584, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35274389

RESUMO

Brain-state-dependent stimulation during slow-wave sleep is a promising tool for the treatment of psychiatric and neurodegenerative diseases. A widely used slow-wave prediction algorithm required for brain-state-dependent stimulation is based on a specific amplitude threshold in the electroencephalogram. However, due to decreased slow-wave amplitudes in aging and psychiatric conditions, this approach might miss many slow-waves because they do not fulfill the amplitude criterion. Here, we compared slow-wave peaks predicted via an amplitude-based versus a multidimensional approach using a topographical template of slow-wave peaks in 21 young and 21 older healthy adults. We validate predictions against the gold-standard of offline detected peaks. Multidimensionally predicted peaks resemble the gold-standard regarding spatiotemporal dynamics but exhibit lower peak amplitudes. Amplitude-based prediction, by contrast, is less sensitive, less precise and - especially in the older group - predicts peaks that differ from the gold-standard regarding spatiotemporal dynamics. Our results suggest that amplitude-based slow-wave peak prediction might not always be the ideal choice. This is particularly the case in populations with reduced slow-wave amplitudes, like older adults or psychiatric patients. We recommend the use of multidimensional prediction, especially in studies targeted at populations other than young and healthy individuals.


Assuntos
Sono de Ondas Lentas , Humanos , Idoso , Sono/fisiologia , Movimentos Oculares , Eletroencefalografia/métodos , Envelhecimento
17.
Brain Topogr ; 35(3): 277-281, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35414139

RESUMO

Early reports have claimed that EEG microstate features (e.g. their mean duration or percent of time covered) are largely independent from EEG spectra. This has meanwhile been questioned for conceptual and empirical reasons, but so far, EEG spectral power map correlates of microstate features have not been reported. We present the results of such analyses, conducted both within and between subjects, and report patterns of systematic changes in local EEG spectral amplitude associated with the mean duration, frequency of occurrence and relative contribution of particular microstate classes. The combination of EEG microstate analysis with spectral analysis may therefore be helpful to come to a deeper understanding of local patterns of activation and inhibition associated with particular microstate classes.


Assuntos
Mapeamento Encefálico , Eletroencefalografia , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Humanos
18.
Brain Topogr ; 2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36402917

RESUMO

Consciousness always requires some representational content; that is, one can only be conscious about something. However, the presence of conscious experience (awareness) alone does not determine whether its content is in line with the external and physical world. Dreams, apart from certain forms of hallucinations, typically consist of non-veridical percepts, which are not recognized as false, but rather considered real. This type of experiences have been described as a state of dissociation between phenomenal and reflective awareness. Interestingly, during the transition to sleep, reflective awareness seems to break down before phenomenal awareness as conscious experience does not immediately fade with reduced wakefulness but is rather characterized by the occurrence of uncontrolled thinking and perceptual images, together with a reduced ability to recognize the internal origin of the experience. Relative deactivation of the frontoparietal and preserved activity in parieto-occipital networks has been suggested to account for dream-like experiences during the transition to sleep. We tested this hypothesis by investigating subjective reports of conscious experience and large-scale brain networks using EEG microstates in 45 healthy young subjects during the transition to sleep. We observed an inverse relationship between cognitive effects and physiological activation; dream-like experiences were associated with an increased presence of a microstate with sources in the superior and middle frontal gyrus and precuneus. Additionally, the presence of a microstate associated with higher-order visual areas was decreased. The observed inverse relationship might therefore indicate a disengagement of cognitive control systems that is mediated by specific, inhibitory EEG microstates.

19.
Brain Topogr ; 2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36566448

RESUMO

Developing motor and cognitive skills is needed to achieve expert (motor) performance or functional recovery from a neurological condition, e.g., after stroke. While extensive practice plays an essential role in the acquisition of good motor performance, it is still unknown whether certain person-specific traits may predetermine the rate of motor learning. In particular, learners' functional brain organisation might play an important role in appropriately performing motor tasks. In this paper, we aimed to study how two critical cognitive brain networks-the Attention Network (AN) and the Default Mode Network (DMN)-affect the posterior motor performance in a complex visuomotor task: virtual surfing. We hypothesised that the preactivation of the AN would affect how participants divert their attention towards external stimuli, resulting in robust motor performance. Conversely, the excessive involvement of the DMN-linked to internally diverted attention and mind-wandering-would be detrimental for posterior motor performance. We extracted seven widely accepted microstates-representing participants mind states at rest-out of the Electroencephalography (EEG) resting-state recordings of 36 healthy volunteers, prior to execution of the virtual surfing task. By correlating neural biomarkers (microstates) and motor behavioural metrics, we confirmed that the preactivation of the posterior DMN was correlated with poor posterior performance in the motor task. However, we only found a non-significant association between AN preactivation and the posterior motor performance. In this EEG study, we propose the preactivation of the posterior DMN-imaged using EEG microstates-as a neural trait related to poor posterior motor performance. Our findings suggest that the role of the executive control system is to preserve an homeostasis between the AN and the DMN. Therefore, neurofeedback-based downregulation of DMN preactivation could help optimise motor training.

20.
Conscious Cogn ; 99: 103283, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35151967

RESUMO

Differences in conscious experience of reality occur between waking, dreaming, and psychotic states. Between these states, there are systematic differences in the judgment about the reality of the experience when being confronted with bizarre breaks. However, the mechanisms underlying experience of reality in these different states are still unknown. To investigate the effect of bizarre breaks on experience of reality during the wake state, we propose a new paradigm using dream-like bizarreness and immersive virtual reality. Results showed that the realistic non-bizarre virtual environment induced high levels of reality judgment and spatial presence, whereas the confrontation with bizarre breaks induced high levels of experienced bizarreness. Moreover, experienced bizarreness significantly reduced reality judgment in both the bizarre and the realistic condition. Further, there was no effect of bizarre breaks on spatial presence. These results provide proof of concept for the new method to elicit natural bizarre experience within a realistic scenario.


Assuntos
Transtornos Psicóticos , Realidade Virtual , Estado de Consciência , Sonhos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA