Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurophysiol ; 107(3): 850-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22072515

RESUMO

There are many cellular and synaptic mechanisms of plasticity in the vertebrate cortex. How the patterns of suprathreshold spiking activity in a population of neurons change because of this plasticity, however, has hardly been subjected to experimental studies. Here, we measured how evoked patterns of suprathreshold spiking activity in a cortical network were modified by cortical plasticity with single-cell and single-spike resolution. To record patterns of activity in the rodent barrel cortex, we used optical methods to detect suprathreshold activity from up to 40 neurons simultaneously. Pairing of two inputs resulted in a long-lasting modification of the cortical responses evoked by one of the inputs. The results indicate that plasticity rules on the network level inherit properties from synaptic plasticity rules but are also determined by the functional synaptic architecture, as well as the computations carried out in cortical networks. The largest determinants of the modified cortical responses were those observed when inducing changes by pairing the two inputs. On the single-neuron level, the modified responses only weakly reflected those observed when pairing the two inputs for induction of plasticity. Despite the weak reflection on the cellular level, however, the modified patterns reflected the pairing patterns to the degree that a simple decoding mechanism-a linear separator-correctly discriminated the modified responses from other patterns of activity.


Assuntos
Plasticidade Neuronal , Córtex Somatossensorial/fisiologia , Animais , Estimulação Elétrica , Potenciais Evocados/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Sinapses/fisiologia
2.
J Neurophysiol ; 106(3): 1118-24, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21653720

RESUMO

The performance of neural codes to represent attributes of sensory signals has been evaluated in the vertebrate peripheral and central nervous system. Here, we determine how information signaled by populations of neurons is modified by plasticity. Suprathreshold neuronal responses from a large number of neurons were recorded in the juvenile mouse barrel cortex using dithered random-access scanning. Pairing of one input with another resulted in a long-lasting, input-specific modification of the cortical responses. Mutual information analysis indicated that cortical plasticity efficiently changed information signaled by populations of neurons. The contribution of neural correlations to the change in mutual information was negative. The largest factor limiting fidelity of mutual information after pairing was a low reliability of the modified cortical responses.


Assuntos
Potenciais de Ação/fisiologia , Córtex Cerebral/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Transdução de Sinais/fisiologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-21629764

RESUMO

Propagation of suprathreshold spiking activity through neuronal populations is important for the function of the central nervous system. Neural correlations have an impact on cortical function particularly on the signaling of information and propagation of spiking activity. Therefore we measured the change in correlations as suprathreshold spiking activity propagated between recurrent neuronal networks of the mammalian cerebral cortex. Using optical methods we recorded spiking activity from large samples of neurons from two neural populations simultaneously. The results indicate that correlations decreased as spiking activity propagated from layer 4 to layer 2/3 in the rodent barrel cortex.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA