Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Sci Food Agric ; 96(1): 122-30, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25565275

RESUMO

BACKGROUND: The aim of this study was to investigate the effects of low to moderate temperatures on gluten functionality and gluten protein composition. Four spring wheat cultivars were grown in climate chambers with three temperature regimes (day/night temperatures of 13/10, 18/15 and 23/20 °C) during grain filling. RESULTS: The temperature strongly influenced grain weight and protein content. Gluten quality measured by maximum resistance to extension (Rmax ) was highest in three cultivars grown at 13 °C. Rmax was positively correlated with the proportion of sodium dodecyl sulfate-unextractable polymeric proteins (%UPP). The proportions of ω-gliadins and D-type low-molecular-weight glutenin subunits (LMW-GS) increased and the proportions of α- and γ-gliadins and B-type LMW-GS decreased with higher temperature, while the proportion of high-molecular-weight glutenin subunits (HMW-GS) was constant between temperatures. The cultivar Berserk had strong and constant Rmax between the different temperatures. CONCLUSION: Constant low temperature, even as low as 13 °C, had no negative effects on gluten quality. The observed variation in Rmax related to temperature could be explained more by %UPP than by changes in the proportions of HMW-GS or other gluten proteins. The four cultivars responded differently to temperature, as gluten from Berserk was stronger and more stable over a wide range of temperatures.


Assuntos
Grão Comestível/química , Farinha , Glutens/química , Proteínas de Plantas/química , Sementes/crescimento & desenvolvimento , Temperatura , Triticum , Pão , Clima , Elasticidade , Gliadina/análise , Glutens/análise , Humanos , Peso Molecular , Desenvolvimento Vegetal , Subunidades Proteicas/análise , Sementes/metabolismo , Triticum/química , Triticum/classificação , Triticum/crescimento & desenvolvimento , Viscosidade
2.
Food Funct ; 15(14): 7364-7374, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38912915

RESUMO

Bioactive peptides derived from food are promising health-promoting ingredients that can be used in functional foods and nutraceutical formulations. In addition to the potency towards the selected therapeutic target, the bioavailability of bioactive peptides is a major factor regarding clinical efficacy. We have previously shown that a low molecular weight peptide fraction (LMWPF) from poultry by-product hydrolysates possesses angiotensin-1-converting enzyme (ACE-1) and dipeptidyl-peptidase 4 (DPP4) inhibitory activities. The present study aimed to investigate the bioavailability of the bioactive peptides in the LMWPF. Prior to the investigation of bioavailability, a dipeptide YA was identified from this fraction as a dual inhibitor of ACE-1 and DPP4. Gastrointestinal (GI) stability and intestinal absorption of the bioactive peptides (i.e., YA as well as two previously reported bioactive dipeptides (VL and IY)) in the LMWPF were evaluated using the INFOGEST static in vitro digestion model and intestinal Caco-2 cell monolayer, respectively. Analysis of peptides after in vitro digestion confirmed that the dipeptides were resistant to the simulated GI conditions. After 4 hours of incubation, the concentration of the peptide from the apical side of the Caco-2 cell monolayer showed a significant decrease. However, the corresponding absorbed peptides were not detected on the basolateral side, suggesting that the peptides were not transported across the intestinal monolayer but rather taken up or metabolized by the Caco2 cells. Furthermore, when analyzing the gene expression of the Caco-2 cells upon peptide stimulation, a down-regulation of peptide transporters, the transcription factor CDX2, and the tight junction protein-1 (TJP1) was observed, suggesting the specific effects of the peptides on the Caco-2 cells. The study demonstrated that bioactive dipeptides found in the LMWPF were stable through in vitro GI digestion; however, the overall bioavailability may be hindered by inadequate uptake across the intestinal barrier.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Dipeptidil Peptidase 4 , Inibidores da Dipeptidil Peptidase IV , Absorção Intestinal , Hidrolisados de Proteína , Animais , Humanos , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacocinética , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Disponibilidade Biológica , Células CACO-2 , Digestão , Dipeptídeos/química , Dipeptídeos/metabolismo , Dipeptídeos/farmacocinética , Dipeptídeos/farmacologia , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/química , Inibidores da Dipeptidil Peptidase IV/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacocinética , Inibidores da Dipeptidil Peptidase IV/farmacologia , Trato Gastrointestinal/metabolismo , Absorção Intestinal/efeitos dos fármacos , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacocinética , Peptídeos/farmacologia , Peptidil Dipeptidase A/metabolismo , Aves Domésticas , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacologia
3.
Poult Sci ; 103(11): 104120, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39232306

RESUMO

This study investigated the effects of supplementing the diet of a slow-growing autochthonous chicken breed with dehydrated or live Black Soldier Fly Larvae (BSFL) on meat quality and sensory attributes. The research, conducted at the University of Turin, Italy, involved 144 male birds distributed in three experimental groups. The control group (C) was fed a basal diet in which soybean meal was completely substituted with alternative ingredients. The 2 experimental groups were administered a diet identical to the control group but supplemented with either whole dehydrated black soldier fly larvae (DL) or whole live black soldier fly larvae (LL) at a level equal to 5% expected daily feed intake of dry matter. We evaluated the following parameters: nutrient intake, slaughtering performance, physical and nutritional meat quality, fatty acid composition, proteomics, and sensory characteristics. The results demonstrated BSFL supplementation to have no detrimental effects on overall meat quality or sensory attributes. Specifically, there were no significant differences in physical meat quality parameters, nutritional composition, lipid oxidation, or protein digestibility between control and BSFL-fed groups. Fatty acid analysis revealed higher concentrations of lauric and myristic acids in BSFL-fed chicken breast (p < 0.005), suggesting potential nutritional benefits from the supplement. The proteomic analysis also showed no significant differences in the expression of abundant proteins in the breast meat between groups, indicating minimal physiological impact of BSFL supplementation. Overall, this study provides reassurance to consumers and industries about the suitability of BSFL as a sustainable feed supplement for poultry that also offers potential benefits in terms of optimizing the fatty acid profile of chicken meat.


Assuntos
Ração Animal , Galinhas , Dieta , Suplementos Nutricionais , Larva , Carne , Animais , Galinhas/fisiologia , Galinhas/crescimento & desenvolvimento , Ração Animal/análise , Dieta/veterinária , Masculino , Carne/análise , Suplementos Nutricionais/análise , Larva/fisiologia , Larva/crescimento & desenvolvimento , Simuliidae/fisiologia , Simuliidae/química , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Distribuição Aleatória , Ácidos Graxos/metabolismo , Ácidos Graxos/análise
4.
Int J Food Microbiol ; 331: 108712, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-32563775

RESUMO

The bread-making quality of wheat depends on the viscoelastic properties of the dough in which gluten proteins play an important role. The quality of gluten proteins is influenced by the genetics of the different wheat varieties and environmental factors. Occasionally, a near complete loss of gluten strength, measured as the maximum resistance towards stretching (Rmax), is observed in grain lots of Norwegian wheat. It is hypothesized that the loss of gluten quality is caused by degradation of gluten proteins by fungal proteases. To identify fungi associated with loss of gluten strength, samples from a selection of wheat grain lots with weak gluten (n = 10, Rmax < 0.3 N) and strong gluten (n = 10, Rmax ≥ 0.6 N) was analyzed for the abundance of fungal operational taxonomic units (OTUs) using DNA metabarcoding of the nuclear ribosomal Internal Transcribed Spacer (ITS) region ITS1. The DNA quantities for a selection of fungal pathogens of wheat, and the total amount of fungal DNA, were analyzed by quantitative PCR (qPCR). The mean level of total fungal DNA was higher in grain samples with weak gluten compared to grain samples with strong gluten. Heightened quantities of DNA from fungi within the Fusarium Head Blight (FHB) complex, i.e. Fusarium avenaceum, Fusarium graminearum, Microdochium majus, and Microdochium nivale, were observed in grain samples with weak gluten compared to those with strong gluten. Microdochium majus was the dominant fungus in the samples with weak gluten. Stepwise regression modeling based on different wheat quality parameters, qPCR data, and the 35 most common OTUs revealed a significant negative association between gluten strength and three OTUs, of which the OTU identified as M. majus was the most abundant. The same analysis also revealed a significant negative relationship between gluten strength and F. avenaceum detected by qPCR, although the DNA levels of this fungus were low compared to those of M. majus. In vitro growth rate studies of a selection of FHB species showed that all the tested isolates were able to grow with gluten as a sole nitrogen source. In addition, proteins secreted by these fungi in liquid cultures were able to hydrolyze gluten substrate proteins in zymograms, confirming their capacity to secrete gluten-degrading proteases. The identification of fungi with potential to influence gluten quality can enable the development of strategies to minimize future problems with gluten strength in food-grade wheat.


Assuntos
Microbiologia de Alimentos , Fungos/classificação , Glutens/química , Triticum/química , Triticum/microbiologia , DNA Fúngico/genética , Grão Comestível/microbiologia , Fungos/genética , Fungos/isolamento & purificação , Fungos/metabolismo , Glutens/metabolismo , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Triticum/metabolismo
5.
J Agric Food Chem ; 67(40): 11025-11034, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31502841

RESUMO

Recently, we have observed a relationship between poor breadmaking quality and protease activities related to fungal infection. This study aims to identify potential gluten-degrading proteases secreted by fungi and to analyze effects of these proteases on rheological properties of dough and gluten. Fusarium graminearum-infected grain was used as a model system. Zymography showed that serine-type proteases secreted by F. graminearum degrade gluten proteins. Zymography followed by liquid chromatography-mass spectrometry (MS)/MS analysis predicted one serine carboxypeptidase and seven serine endo-peptidases to be candidate fungal proteases involved in gluten degradation. Effects of fungal proteases on the time-dependent rheological properties of dough and gluten were analyzed by small amplitude oscillatory shear rheology and large deformation extensional rheology. Our results indicate that fungal proteases degrade gluten proteins not only in the grain itself, but also during dough preparation and resting. Our study gives new insights into fungal proteases and their potential role in weakening of gluten.


Assuntos
Carboxipeptidases/metabolismo , Endopeptidases/metabolismo , Proteínas Fúngicas/metabolismo , Fusarium/enzimologia , Glutens/metabolismo , Doenças das Plantas/microbiologia , Triticum/microbiologia , Carboxipeptidases/química , Endopeptidases/química , Farinha/análise , Farinha/microbiologia , Proteínas Fúngicas/química , Fusarium/fisiologia , Glutens/análise , Espectrometria de Massas , Reologia , Triticum/química , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA