Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 609(7925): 174-182, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36002574

RESUMO

The efficacy of adoptive T cell therapies for cancer treatment can be limited by suppressive signals from both extrinsic factors and intrinsic inhibitory checkpoints1,2. Targeted gene editing has the potential to overcome these limitations and enhance T cell therapeutic function3-10. Here we performed multiple genome-wide CRISPR knock-out screens under different immunosuppressive conditions to identify genes that can be targeted to prevent T cell dysfunction. These screens converged on RASA2, a RAS GTPase-activating protein (RasGAP) that we identify as a signalling checkpoint in human T cells, which is downregulated upon acute T cell receptor stimulation and can increase gradually with chronic antigen exposure. RASA2 ablation enhanced MAPK signalling and chimeric antigen receptor (CAR) T cell cytolytic activity in response to target antigen. Repeated tumour antigen stimulations in vitro revealed that RASA2-deficient T cells show increased activation, cytokine production and metabolic activity compared with control cells, and show a marked advantage in persistent cancer cell killing. RASA2-knockout CAR T cells had a competitive fitness advantage over control cells in the bone marrow in a mouse model of leukaemia. Ablation of RASA2 in multiple preclinical models of T cell receptor and CAR T cell therapies prolonged survival in mice xenografted with either liquid or solid tumours. Together, our findings highlight RASA2 as a promising target to enhance both persistence and effector function in T cell therapies for cancer treatment.


Assuntos
Antígenos de Neoplasias , Neoplasias , Linfócitos T , Proteínas Ativadoras de ras GTPase , Animais , Antígenos de Neoplasias/imunologia , Medula Óssea , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Humanos , Imunoterapia Adotiva , Leucemia/imunologia , Leucemia/patologia , Leucemia/terapia , Camundongos , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fatores de Tempo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Ativadoras de ras GTPase/deficiência , Proteínas Ativadoras de ras GTPase/genética
2.
Nat Immunol ; 16(7): 766-774, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25985233

RESUMO

Childhood acute lymphoblastic leukemia (ALL) can often be traced to a pre-leukemic clone carrying a prenatal genetic lesion. Postnatally acquired mutations then drive clonal evolution toward overt leukemia. The enzymes RAG1-RAG2 and AID, which diversify immunoglobulin-encoding genes, are strictly segregated in developing cells during B lymphopoiesis and peripheral mature B cells, respectively. Here we identified small pre-BII cells as a natural subset with increased genetic vulnerability owing to concurrent activation of these enzymes. Consistent with epidemiological findings on childhood ALL etiology, susceptibility to genetic lesions during B lymphopoiesis at the transition from the large pre-BII cell stage to the small pre-BII cell stage was exacerbated by abnormal cytokine signaling and repetitive inflammatory stimuli. We demonstrated that AID and RAG1-RAG2 drove leukemic clonal evolution with repeated exposure to inflammatory stimuli, paralleling chronic infections in childhood.


Assuntos
Linfócitos B/imunologia , Evolução Clonal/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Células Precursoras de Linfócitos B/imunologia , Adolescente , Animais , Diversidade de Anticorpos/genética , Diversidade de Anticorpos/imunologia , Linfócitos B/metabolismo , Criança , Pré-Escolar , Evolução Clonal/genética , Citidina Desaminase/genética , Citidina Desaminase/imunologia , Citidina Desaminase/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Proteínas de Ligação a DNA/metabolismo , Feminino , Citometria de Fluxo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Proteínas de Homeodomínio/metabolismo , Humanos , Immunoblotting , Lactente , Masculino , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Camundongos Transgênicos , Microscopia de Fluorescência , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Células Precursoras de Linfócitos B/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
3.
Cell ; 145(1): 145-58, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21458673

RESUMO

RNA interference is a powerful tool for studying gene function, however, the reproducible generation of RNAi transgenic mice remains a significant limitation. By combining optimized fluorescence-coupled miR30-based shRNAs with high efficiency ES cell targeting, we developed a fast, scalable pipeline for the production of shRNA transgenic mice. Using this system, we generated eight tet-regulated shRNA transgenic lines targeting Firefly and Renilla luciferases, Oct4 and tumor suppressors p53, p16(INK4a), p19(ARF) and APC and demonstrate potent gene silencing and GFP-tracked knockdown in a broad range of tissues in vivo. Further, using an shRNA targeting APC, we illustrate how this approach can identify predicted phenotypes and also unknown functions for a well-studied gene. In addition, through regulated gene silencing we validate APC/Wnt and p19(ARF) as potential therapeutic targets in T cell acute lymphoblastic leukemia/lymphoma and lung adenocarcinoma, respectively. This system provides a cost-effective and scalable platform for the production of RNAi transgenic mice targeting any mammalian gene. PAPERCLIP:


Assuntos
Técnicas de Silenciamento de Genes/métodos , Interferência de RNA , Adenocarcinoma/genética , Adenocarcinoma/terapia , Animais , Células-Tronco Embrionárias/metabolismo , Técnicas de Silenciamento de Genes/economia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Processamento Pós-Transcricional do RNA , RNA Interferente Pequeno/genética , Transdução de Sinais , Proteínas Wnt/metabolismo
4.
Haematologica ; 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38152053

RESUMO

Mutations in five canonical Ras pathway genes (NF1, NRAS, KRAS, PTPN11 and CBL) are detected in nearly 90% of patients with juvenile myelomonocytic leukemia (JMML), a frequently fatal malignant neoplasm of early childhood. In this report, we describe seven patients diagnosed with SH2B3-mutated JMML, including five patients who were found to have initiating, loss of function mutations in the gene. SH2B3 encodes the adaptor protein LNK, a negative regulator of normal hematopoiesis upstream of the Ras pathway. These mutations were identified to be germline, somatic or a combination of both. Loss of function of LNK, which has been observed in other myeloid malignancies, results in abnormal proliferation of hematopoietic cells due to cytokine hypersensitivity and activation of the JAK/STAT signaling pathway. In vitro studies of induced pluripotent stem cell-derived JMML-like hematopoietic progenitor cells (HPCs) also demonstrated sensitivity of SH2B3- mutated HPCs to JAK inhibition. Lastly, we describe two patients with JMML and SH2B3 mutations who were treated with the JAK1/2 inhibitor ruxolitinib. This report expands the spectrum of initiating mutations in JMML and raises the possibility of targeting the JAK/STAT pathway in patients with SH2B3 mutations.

5.
Cytogenet Genome Res ; 162(3): 119-123, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35675801

RESUMO

Interstitial deletion in the long arm of chromosome 9 [del(9q)] is a fairly common cytogenetic finding associated with acute myeloid leukemia (AML), seen in approximately 2-5% of AML patients. However, the genomic features of the deletion remain largely unknown. Using chromosome analysis, single nucleotide polymorphism microarray, and next-generation sequencing, we characterized del(9q)s and other genomic alterations in 9 AML patients. We found several distinct features of the del(9q)s. The proximal breakpoints of the deletions are clustered within a 2.5-Mb region (chr9: 68,513,625-70,984,372; GRCh37) enriched with segmental duplications, which may represent a "hotspot" for genomic rearrangements. However, the distal breakpoints of the deletions vary significantly. In addition, the overall deleted region could be divided into a 14.4-Mb proximal constitutional region (chr9: 70,950,015-85,397,699; 9q21.11q21.32) and a 24.0-Mb distal oncogenic region (chr9: 85,397,700-109,427,261; 9q21.32q31.1). We further identified a 6.8-Mb common overlapped deletion region (CODR) in the distal region (chr9: 90,590,650-97,366,400). This CODR carries multiple genes that are reportedly involved in cancer pathogenesis. The prognostic value of the del(9q) in AML apparently depends on additional genomic alterations in the patients.


Assuntos
Deleção Cromossômica , Leucemia Mieloide Aguda , Cromossomos , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Leucemia Mieloide Aguda/genética
6.
Blood ; 135(20): 1772-1782, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32219446

RESUMO

Oncogenic RAS mutations pose substantial challenges for rational drug discovery. Sequence variations within the hypervariable region of Ras isoforms underlie differential posttranslational modification and subcellular trafficking, potentially resulting in selective vulnerabilities. Specifically, inhibiting the palmitoylation/depalmitoylation cycle is an appealing strategy for treating NRAS mutant cancers, particularly as normal tissues would retain K-Ras4b function for physiologic signaling. The role of endogenous N-RasG12D palmitoylation in signal transduction, hematopoietic differentiation, and myeloid transformation is unknown, and addressing these key questions will inform efforts to develop mechanism-based therapies. To evaluate the palmitoylation/depalmitoylation cycle as a candidate drug target in an in vivo disease-relevant model system, we introduced a C181S mutation into a conditional NrasG12D "knock-in" allele. The C181S second-site amino acid substitution abrogated myeloid transformation by NrasG12D, which was associated with mislocalization of the nonpalmitoylated N-Ras mutant protein, reduced Raf/MEK/ERK signaling, and alterations in hematopoietic stem and progenitor populations. Furthermore, hematologic malignancies arising in NrasG12D/G12D,C181S compound heterozygous mice invariably acquired revertant mutations that restored cysteine 181. Together, these studies validate the palmitoylation cycle as a promising therapeutic target in NRAS mutant cancers.


Assuntos
Transformação Celular Neoplásica/genética , Neoplasias Hematológicas/genética , Hematopoese/genética , Lipoilação/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Substituição de Aminoácidos , Animais , Ácido Aspártico/genética , Transformação Celular Neoplásica/metabolismo , Células Cultivadas , Glicina/genética , Neoplasias Hematológicas/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Redes e Vias Metabólicas/genética , Camundongos , Camundongos Transgênicos , Ácido Palmítico/metabolismo
7.
Am J Epidemiol ; 190(4): 519-527, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33034340

RESUMO

Incidence trends in acute lymphoblastic leukemia (ALL) demonstrate disparities by race and ethnicity. We used data from the Surveillance, Epidemiology, and End Results Registry to evaluate patterns in ALL incidence from 2000 to 2016, including the association between percentage of people born in a foreign country at the county level and ALL incidence. Among 23,829 persons of all ages diagnosed with ALL, 8,297 (34.8%) were Latinos, 11,714 (49.2%) were non-Latino (NL) Whites, and 1,639 (6.9%) were NL Blacks. Latinos had the largest increase in the age-adjusted incidence rate (AAIR) of ALL during this period compared with other races/ethnicities for both children and adults: The AAIR was 1.6 times higher for Latinos (AAIR = 2.43, 95% confidence interval (CI): 2.37, 2.49) than for NL Whites (AAIR = 1.56, 95% CI: 1.53, 1.59) (P < 0.01). The AAIR for all subjects increased approximately 1% per year from 2000 to 2016 (annual percent change = 0.97, 95% CI: 0.67, 1.27), with the highest increase being observed in Latinos (annual percent change = 1.18, 95% CI: 0.76, 1.60). In multivariable models evaluating the contribution of percentage of county residents who were foreign-born to ALL risk, a positive association was found for percentage foreign-born for NL Whites (P for trend < 0.01) and NL Blacks (P for trend < 0.01), but the reverse was found for Latinos (P for trend < 0.01); this is consistent with tenets of the "Hispanic paradox," in which better health outcomes exist for foreign-born Latinos.


Assuntos
Etnicidade , Leucemia-Linfoma Linfoblástico de Células Precursoras/etnologia , Grupos Raciais , Sistema de Registros , Programa de SEER , Adolescente , Adulto , Feminino , Humanos , Incidência , Masculino , Estados Unidos/epidemiologia , Adulto Jovem
8.
Blood ; 133(13): 1495-1506, 2019 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-30674471

RESUMO

Acute promyelocytic leukemia (APL) is often associated with activating FLT3 signaling mutations. These are highly related to hyperleukocytosis, a major adverse risk factor with chemotherapy-based regimens. APL is a model for oncogene-targeted therapies: all-trans retinoic acid (ATRA) and arsenic both target and degrade its ProMyelocytic Leukemia/Retinoic Acid Receptor α (PML/RARA) driver. The combined ATRA/arsenic regimen now cures virtually all patients with standard-risk APL. Although FLT3-internal tandem duplication (ITD) was an adverse risk factor for historical ATRA/chemotherapy regimens, the molecular bases for this effect remain unknown. Using mouse APL models, we unexpectedly demonstrate that FLT3-ITD severely blunts ATRA response. Remarkably, although the transcriptional output of initial ATRA response is unaffected, ATRA-induced PML/RARA degradation is blunted, as is PML nuclear body reformation and activation of P53 signaling. Critically, the combination of ATRA and arsenic fully rescues therapeutic response in FLT3-ITD APLs, restoring PML/RARA degradation, PML nuclear body reformation, P53 activation, and APL eradication. Moreover, arsenic targeting of normal PML also contributes to APL response in vivo. These unexpected results explain the less favorable outcome of FLT3-ITD APLs with ATRA-based regimens, and stress the key role of PML nuclear bodies in APL eradication by the ATRA/arsenic combination.


Assuntos
Antineoplásicos/uso terapêutico , Arsênio/uso terapêutico , Leucemia Promielocítica Aguda/tratamento farmacológico , Tretinoína/uso terapêutico , Tirosina Quinase 3 Semelhante a fms/genética , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Feminino , Leucemia Promielocítica Aguda/genética , Camundongos Endogâmicos C57BL , Mutação
9.
Clin Sci (Lond) ; 135(8): 1053-1063, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33851706

RESUMO

Acute lymphoblastic leukemia (ALL) is the most common cancer in children. Thirdhand smoke (THS) is the residual tobacco contamination that remains after the smoke clears. We investigated the effects of THS exposure in utero and during early life in a transgenic Cdkn2a knockout mouse model that is vulnerable to the development of leukemia/lymphoma. Female mice, and their offspring, were exposed from the first day of pregnancy to weaning. Plasma cytokines, body weight and hematologic parameters were measured in the offspring. To investigate THS exposure effects on the development of leukemia/lymphoma, bone marrow (BM) was collected from control and THS-exposed mice and transplanted into BM-ablated recipient mice, which were followed for tumor development for 1 year. We found that in utero and early-life THS exposure caused significant changes in plasma cytokine concentrations and in immune cell populations; changes appeared more pronounced in male mice. Spleen (SP) and BM B-cell populations were significantly lower in THS-exposed mice. We furthermore observed that THS exposure increased the leukemia/lymphoma-free survival in BM transplantation recipient mice, potentially caused by THS-induced B-cell toxicity. A trend towards increased solid tumors in irradiated mice reconstituted with THS-exposed BM stimulates the hypothesis that the immunosuppressive effects of in utero and early-life THS exposure might contribute to carcinogenesis by lowering the host defense to other toxic exposures. Our study adds to expanding evidence that THS exposure alters the immune system and that in utero and early-life developmental periods represent vulnerable windows of susceptibility for these effects.


Assuntos
Sistema Imunitário/efeitos dos fármacos , Leucemia/etiologia , Linfoma/etiologia , Nicotiana/efeitos adversos , Fumaça/efeitos adversos , Animais , Leucemia/imunologia , Linfoma/imunologia , Camundongos Transgênicos , Poluição por Fumaça de Tabaco/efeitos adversos , Poluição por Fumaça de Tabaco/análise
10.
Am J Epidemiol ; 189(10): 1076-1085, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32322901

RESUMO

Surrogate measures of infectious exposures have been consistently associated with lower childhood acute lymphoblastic leukemia (ALL) risk. However, recent reports have suggested that physician-diagnosed early-life infections increase ALL risk, thereby raising the possibility that stronger responses to infections might promote risk. We examined whether medically diagnosed infections were related to childhood ALL risk in an integrated health-care system in the United States. Cases of ALL (n = 435) diagnosed between 1994-2014 among children aged 0-14 years, along with matched controls (n = 2,170), were identified at Kaiser Permanente Northern California. Conditional logistic regression was used to estimate risk of ALL associated with history of infections during first year of life and across the lifetime (up to diagnosis). History of infection during first year of life was not associated with ALL risk (odds ratio (OR) = 0.85, 95% confidence interval (CI): 0.60, 1.21). However, infections with at least 1 medication prescribed (i.e., more "severe" infections) were inversely associated with risk (OR = 0.42, 95% CI: 0.20, 0.88). Similar associations were observed when the exposure window was expanded to include medication-prescribed infections throughout the subjects' lifetime (OR = 0.52, 95% CI: 0.32, 0.85).


Assuntos
Infecções/epidemiologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/epidemiologia , Adolescente , California/epidemiologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino
11.
Blood ; 131(6): 636-648, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29191918

RESUMO

A hallmark of acute promyelocytic leukemia (APL) is altered nuclear architecture, with disruption of promyelocytic leukemia (PML) nuclear bodies (NBs) mediated by the PML-retinoic acid receptor α (RARα) oncoprotein. To address whether this phenomenon plays a role in disease pathogenesis, we generated a knock-in mouse model with NB disruption mediated by 2 point mutations (C62A/C65A) in the Pml RING domain. Although no leukemias developed in PmlC62A/C65A mice, these transgenic mice also expressing RARα linked to a dimerization domain (p50-RARα model) exhibited a doubling in the rate of leukemia, with a reduced latency period. Additionally, we found that response to targeted therapy with all-trans retinoic acid in vivo was dependent on NB integrity. PML-RARα is recognized to be insufficient for development of APL, requiring acquisition of cooperating mutations. We therefore investigated whether NB disruption might be mutagenic. Compared with wild-type cells, primary PmlC62A/C65A cells exhibited increased sister-chromatid exchange and chromosome abnormalities. Moreover, functional assays showed impaired homologous recombination (HR) and nonhomologous end-joining (NHEJ) repair pathways, with defective localization of Brca1 and Rad51 to sites of DNA damage. These data directly demonstrate that Pml NBs are critical for DNA damage responses, and suggest that Pml NB disruption is a central contributor to APL pathogenesis.


Assuntos
Reparo do DNA/genética , Corpos de Inclusão Intranuclear/metabolismo , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/patologia , Proteína da Leucemia Promielocítica/fisiologia , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Dano ao DNA/genética , Reparo do DNA por Junção de Extremidades/genética , Corpos de Inclusão Intranuclear/genética , Leucemia Promielocítica Aguda/metabolismo , Camundongos , Camundongos Transgênicos , Mutagênese/genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteína da Leucemia Promielocítica/genética , Transdução de Sinais/genética
12.
Blood ; 129(12): 1680-1684, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-27979823

RESUMO

It is widely suspected, yet controversial, that infection plays an etiologic role in the development of acute lymphoblastic leukemia (ALL), the most common childhood cancer and a disease with a confirmed prenatal origin in most cases. We investigated infections at diagnosis and then assessed the timing of infection at birth in children with ALL and age, gender, and ethnicity matched controls to identify potential causal initiating infections. Comprehensive untargeted virome and bacterial analyses of pretreatment bone marrow specimens (n = 127 ALL in comparison with 38 acute myeloid leukemia cases in a comparison group) revealed prevalent cytomegalovirus (CMV) infection at diagnosis in childhood ALL, demonstrating active viral transcription in leukemia blasts as well as intact virions in serum. Screening of newborn blood samples revealed a significantly higher prevalence of in utero CMV infection in ALL cases (n = 268) than healthy controls (n = 270) (odds ratio [OR], 3.71, confidence interval [CI], 1.56-7.92, P = .0016). Risk was more pronounced in Hispanics (OR=5.90, CI=1.89-25.96) than in non-Hispanic whites (OR=2.10 CI= 0.69-7.13). This is the first study to suggest that congenital CMV infection is a risk factor for childhood ALL and is more prominent in Hispanic children. Further investigation of CMV as an etiologic agent for ALL is warranted.


Assuntos
Infecções por Citomegalovirus/complicações , Triagem Neonatal/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/virologia , Exame de Medula Óssea , Estudos de Casos e Controles , Infecções por Citomegalovirus/congênito , Infecções por Citomegalovirus/etnologia , Hispânico ou Latino , Humanos , Recém-Nascido , Leucemia-Linfoma Linfoblástico de Células Precursoras/etiologia , Prevalência , População Branca
13.
Exp Cell Res ; 370(2): 551-560, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30009791

RESUMO

Leukemia is a malignance with complex pathogenesis and poor prognosis. Discovery of noval regulators amenable to leukemia could be of value to gain insight into the pathogenesis, diagnosis and prognosis of leukemia. Here, we conducted a large-scale shRNA library screening for functional regulators in the development of myeloid cells in primary cells. We identified eighteen candidate regulators in the primary screening. Those genes cover a wide range of cellular functions, including gene expression regulation, intracellular signaling transduction, nucleotide excision repair, cell cycle control and transcription regulation. In both primary screening and validation, shRNAs targeting Tcea1, encoding the transcription elongation factor A (SII) 1, exhibited the greatest influence on the proliferative potential of cells. Knocking down the expression of Tcea1 in the 32Dcl3 myeloid cell line led to enhanced proliferation of myeloid cells and blockage of myeloid differentiation induced by G-CSF. In addition, silence of Tcea1 inhibited apoptosis of myeloid cells. Thus, Tcea1 was identified as a gene which can influence the proliferative potential, survival and differentiation of myeloid cells. These findings have implications for how transcriptional elongation influences myeloid cell development and leukemic transformation.


Assuntos
Diferenciação Celular/genética , Regulação da Expressão Gênica/genética , Células Mieloides/citologia , Fatores de Elongação da Transcrição/genética , Animais , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Fator Estimulador de Colônias de Granulócitos/genética , Hematopoese/genética , Camundongos , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo
14.
Mol Ther ; 26(7): 1685-1693, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29914756

RESUMO

Treatment of myocardial infarction (MI) with bone marrow cells (BMCs) improves post-MI cardiac function in rodents. However, clinical trials of BMC therapy have been less effective. While most rodent experiments use young healthy donors, patients undergoing autologous cell therapy are older and post-MI. We previously demonstrated that BMCs from aged and post-MI donor mice are therapeutically impaired, and that donor MI induces inflammatory changes in BMC composition including reduced levels of B lymphocytes. Here, we hypothesized that B cell alterations in bone marrow account for the reduced therapeutic potential of post-MI and aged donor BMCs. Injection of BMCs from increasingly aged donor mice resulted in progressively poorer cardiac function and larger infarct size. Flow cytometry revealed fewer B cells in aged donor bone marrow. Therapeutic efficacy of young healthy donor BMCs was reduced by depletion of B cells. Implantation of intact or lysed B cells improved cardiac function, whereas intact or lysed T cells provided only minor benefit. We conclude that B cells play an important paracrine role in effective BMC therapy for MI. Reduction of bone marrow B cells because of age or MI may partially explain why clinical autologous cell therapy has not matched the success of rodent experiments.


Assuntos
Envelhecimento/fisiologia , Linfócitos B/citologia , Células da Medula Óssea/citologia , Medula Óssea/fisiologia , Coração/fisiologia , Infarto do Miocárdio/fisiopatologia , Animais , Transplante de Medula Óssea/métodos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Citometria de Fluxo/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
15.
Genes Dev ; 25(20): 2125-36, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21979375

RESUMO

Cellular senescence acts as a potent barrier to tumorigenesis and contributes to the anti-tumor activity of certain chemotherapeutic agents. Senescent cells undergo a stable cell cycle arrest controlled by RB and p53 and, in addition, display a senescence-associated secretory phenotype (SASP) involving the production of factors that reinforce the senescence arrest, alter the microenvironment, and trigger immune surveillance of the senescent cells. Through a proteomics analysis of senescent chromatin, we identified the nuclear factor-κB (NF-κB) subunit p65 as a major transcription factor that accumulates on chromatin of senescent cells. We found that NF-κB acts as a master regulator of the SASP, influencing the expression of more genes than RB and p53 combined. In cultured fibroblasts, NF-κB suppression causes escape from immune recognition by natural killer (NK) cells and cooperates with p53 inactivation to bypass senescence. In a mouse lymphoma model, NF-κB inhibition bypasses treatment-induced senescence, producing drug resistance, early relapse, and reduced survival. Our results demonstrate that NF-κB controls both cell-autonomous and non-cell-autonomous aspects of the senescence program and identify a tumor-suppressive function of NF-κB that contributes to the outcome of cancer therapy.


Assuntos
Senescência Celular/fisiologia , Resistência a Medicamentos/fisiologia , Fenótipo , Fator de Transcrição RelA/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Linfoma/metabolismo , Camundongos , Inibidores da Síntese de Proteínas/farmacologia , RNA Interferente Pequeno/metabolismo , Tetraciclina/farmacologia , Proteína Supressora de Tumor p53/metabolismo
16.
Genes Dev ; 25(15): 1628-40, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21828272

RESUMO

Although human cancers have complex genotypes and are genomically unstable, they often remain dependent on the continued presence of single-driver mutations-a phenomenon dubbed "oncogene addiction." Such dependencies have been demonstrated in mouse models, where conditional expression systems have revealed that oncogenes able to initiate cancer are often required for tumor maintenance and progression, thus validating the pathways they control as therapeutic targets. Here, we implement an integrative approach that combines genetically defined mouse models, transcriptional profiling, and a novel inducible RNAi platform to characterize cellular programs that underlie addiction to MLL-AF9-a fusion oncoprotein involved in aggressive forms of acute myeloid leukemia (AML). We show that MLL-AF9 contributes to leukemia maintenance by enforcing a Myb-coordinated program of aberrant self-renewal involving genes linked to leukemia stem cell potential and poor prognosis in human AML. Accordingly, partial and transient Myb suppression precisely phenocopies MLL-AF9 withdrawal and eradicates aggressive AML in vivo without preventing normal myelopoiesis, indicating that strategies to inhibit Myb-dependent aberrant self-renewal programs hold promise as effective and cancer-specific therapeutics. Together, our results identify Myb as a critical mediator of oncogene addiction in AML, delineate relevant Myb target genes that are amenable to pharmacologic inhibition, and establish a general approach for dissecting oncogene addiction in vivo.


Assuntos
Regulação Neoplásica da Expressão Gênica , Leucemia/fisiopatologia , Oncogenes/fisiologia , Proteínas Proto-Oncogênicas c-myb/metabolismo , Animais , Modelos Animais de Doenças , Genes myb/genética , Hematopoese , Camundongos , Proteínas de Fusão Oncogênica/metabolismo , Oncogenes/genética , Proteínas Proto-Oncogênicas c-myb/genética , Interferência de RNA
19.
Genes Dev ; 24(13): 1389-402, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20595231

RESUMO

The p53 tumor suppressor limits proliferation in response to cellular stress through several mechanisms. Here, we test whether the recently described ability of p53 to limit stem cell self-renewal suppresses tumorigenesis in acute myeloid leukemia (AML), an aggressive cancer in which p53 mutations are associated with drug resistance and adverse outcome. Our approach combined mosaic mouse models, Cre-lox technology, and in vivo RNAi to disable p53 and simultaneously activate endogenous Kras(G12D)-a common AML lesion that promotes proliferation but not self-renewal. We show that p53 inactivation strongly cooperates with oncogenic Kras(G12D) to induce aggressive AML, while both lesions on their own induce T-cell malignancies with long latency. This synergy is based on a pivotal role of p53 in limiting aberrant self-renewal of myeloid progenitor cells, such that loss of p53 counters the deleterious effects of oncogenic Kras on these cells and enables them to self-renew indefinitely. Consequently, myeloid progenitor cells expressing oncogenic Kras and lacking p53 become leukemia-initiating cells, resembling cancer stem cells capable of maintaining AML in vivo. Our results establish an efficient new strategy for interrogating oncogene cooperation, and provide strong evidence that the ability of p53 to limit aberrant self-renewal contributes to its tumor suppressor activity.


Assuntos
Leucemia Mieloide Aguda/fisiopatologia , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/metabolismo , Animais , Proliferação de Células , Técnicas de Silenciamento de Genes , Inativação Gênica , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Integrases/genética , Integrases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , RNA/genética , Deleção de Sequência/genética , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA