Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Ecol Lett ; 26(9): 1523-1534, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37330626

RESUMO

Despite host-fungal symbiotic interactions being ubiquitous in all ecosystems, understanding how symbiosis has shaped the ecology and evolution of fungal spores that are involved in dispersal and colonization of their hosts has been ignored in life-history studies. We assembled a spore morphology database covering over 26,000 species of free-living to symbiotic fungi of plants, insects and humans and found more than eight orders of variation in spore size. Evolutionary transitions in symbiotic status correlated with shifts in spore size, but the strength of this effect varied widely among phyla. Symbiotic status explained more variation than climatic variables in the current distribution of spore sizes of plant-associated fungi at a global scale while the dispersal potential of their spores is more restricted compared to free-living fungi. Our work advances life-history theory by highlighting how the interaction between symbiosis and offspring morphology shapes the reproductive and dispersal strategies among living forms.


Assuntos
Micorrizas , Simbiose , Animais , Humanos , Ecossistema , Fungos , Insetos , Plantas , Esporos Fúngicos
2.
New Phytol ; 240(5): 2151-2163, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37781910

RESUMO

Arbuscular mycorrhizal (AM) fungi are crucial mutualistic symbionts of the majority of plant species, with essential roles in plant nutrient uptake and stress mitigation. The importance of AM fungi in ecosystems contrasts with our limited understanding of the patterns of AM fungal biogeography and the environmental factors that drive those patterns. This article presents a release of a newly developed global AM fungal dataset (GlobalAMFungi database, https://globalamfungi.com) that aims to reduce this knowledge gap. It contains almost 50 million observations of Glomeromycotinian AM fungal amplicon DNA sequences across almost 8500 samples with geographical locations and additional metadata obtained from 100 original studies. The GlobalAMFungi database is built on sequencing data originating from AM fungal taxon barcoding regions in: i) the small subunit rRNA (SSU) gene; ii) the internal transcribed spacer 2 (ITS2) region; and iii) the large subunit rRNA (LSU) gene. The GlobalAMFungi database is an open source and open access initiative that compiles the most comprehensive atlas of AM fungal distribution. It is designed as a permanent effort that will be continuously updated by its creators and through the collaboration of the scientific community. This study also documented applicability of the dataset to better understand ecology of AM fungal taxa.


Assuntos
Micorrizas , Micorrizas/genética , Ecossistema , Simbiose , Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Microbiologia do Solo
3.
Ecol Lett ; 24(12): 2726-2738, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34595822

RESUMO

Although spatial and temporal variation are both important components structuring microbial communities, the exact quantification of temporal turnover rates of fungi and bacteria has not been performed to date. In this study, we utilised repeated resampling of bacterial and fungal communities at specific locations across multiple years to describe their patterns and rates of temporal turnover. Our results show that microbial communities undergo temporal change at a rate of 0.010-0.025 per year (in units of Sorensen similarity), and the change in soil is slightly faster in fungi than in bacteria, with bacterial communities changing more rapidly in litter than soil. Importantly, temporal development differs across fungal guilds and bacterial phyla with different ecologies. While some microbial guilds show consistent responses across regional locations, others show site-specific development with weak general patterns. These results indicate that guild-level resolution is important for understanding microbial community assembly, dynamics and responses to environmental factors.


Assuntos
Microbiota , Micobioma , Fungos , Solo , Microbiologia do Solo
4.
New Phytol ; 231(1): 490-499, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33780549

RESUMO

There is no consensus barcoding region for determination of arbuscular mycorrhizal fungal (AMF) taxa. To overcome this obstacle, we have developed an approach to sequence an AMF marker within the ribosome-encoding operon (rDNA) that covers all three widely applied variable molecular markers. Using a nested PCR approach specific to AMF, we amplified a part (c. 2.5 kb) of the rDNA spanning the majority of the small subunit rRNA (SSU) gene, the complete internal transcribed spacer (ITS) region and a part of the large subunit (LSU) rRNA gene. The PCR products were sequenced on the PacBio platform utilizing Single Molecule Real Time (SMRT) sequencing. Employing this method for selected environmental DNA samples, we were able to describe complex AMF communities consisting of various glomeromycotan lineages. We demonstrate the applicability of this new 2.5 kb approach to provide robust phylogenetic assignment of AMF lineages without known sequences from pure cultures and to consolidate information about AMF taxon distributions coming from three widely used barcoding regions into one integrative dataset.


Assuntos
Glomeromycota , Micorrizas , DNA Fúngico/genética , DNA Ribossômico/genética , Fungos/genética , Glomeromycota/genética , Micorrizas/genética , Filogenia , Análise de Sequência de DNA
5.
New Phytol ; 231(2): 763-776, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33507570

RESUMO

The arbuscular mycorrhizal (AM) fungi are a globally distributed group of soil organisms that play critical roles in ecosystem function. However, the ecological niches of individual AM fungal taxa are poorly understood. We collected > 300 soil samples from natural ecosystems worldwide and modelled the realised niches of AM fungal virtual taxa (VT; approximately species-level phylogroups). We found that environmental and spatial variables jointly explained VT distribution worldwide, with temperature and pH being the most important abiotic drivers, and spatial effects generally occurring at local to regional scales. While dispersal limitation could explain some variation in VT distribution, VT relative abundance was almost exclusively driven by environmental variables. Several environmental and spatial effects on VT distribution and relative abundance were correlated with phylogeny, indicating that closely related VT exhibit similar niche optima and widths. Major clades within the Glomeraceae exhibited distinct niche optima, Acaulosporaceae generally had niche optima in low pH and low temperature conditions, and Gigasporaceae generally had niche optima in high precipitation conditions. Identification of the realised niche space occupied by individual and phylogenetic groups of soil microbial taxa provides a basis for building detailed hypotheses about how soil communities respond to gradients and manipulation in ecosystems worldwide.


Assuntos
Micorrizas , Ecossistema , Fungos , Concentração de Íons de Hidrogênio , Filogenia , Solo , Microbiologia do Solo , Temperatura
6.
Mycorrhiza ; 31(3): 273-288, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33486575

RESUMO

Arbuscular mycorrhizal fungi (AMF) colonize the roots of numerous aquatic and wetland plants, but the establishment and functioning of mycorrhizal symbiosis in submerged habitats have received only little attention. Three pot experiments were conducted to study the interaction of isoetid plants with native AMF. In the first experiment, arbuscular mycorrhizal (AM) symbiosis did not establish in roots of Isoëtes echinospora and I. lacustris, while Littorella uniflora roots were highly colonized. Shoot and root biomass of L. uniflora were, however, not affected by AMF inoculation, and only one of nine AMF isolates significantly increased shoot P concentration. In the second experiment, we compared colonization by three Glomus tetrastratosum isolates of different cultivation history and origin (aquatic versus terrestrial) and their effects on L. uniflora growth and phosphorus nutrition under submerged versus terrestrial conditions. The submerged cultivation considerably slowed, but did not inhibit mycorrhizal root colonization, regardless of isolate identity. Inoculation with any AMF isolate improved plant growth and P uptake under terrestrial, but not submerged conditions. In the final experiment, we compared the communities of AMF established in two cultivation regimes of trap cultures with lake sediments, either submerged on L. uniflora or terrestrial on Zea mays. After 2-year cultivation, we did not detect a significant effect of cultivation regime on AMF community composition. In summary, although submerged conditions do not preclude the development of functional AM symbiosis, the contribution of these symbiotic fungi to the fitness of their hosts seems to be considerably less than under terrestrial conditions.


Assuntos
Glomeromycota , Micorrizas , Biomassa , Fungos , Raízes de Plantas , Simbiose
7.
New Phytol ; 227(4): 1200-1212, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32285948

RESUMO

Species-rich seminatural grasslands in Central Europe have suffered a dramatic loss of biodiversity due to conversion to arable land, but vast areas are being restored. Population recovery of orchids, which depend on mycorrhizal fungi for germination, is however limited. We hypothesised that ploughing and fertilisation caused shifts in orchid mycorrhizal communities in soil and restricted orchid germination. We examined edaphic conditions in 60 restored and seminatural grasslands, and germination success in 10 restored grasslands. Using a newly designed primer, we screened the composition of rhizoctonias in soil, seedlings and roots of seven orchid species. Seminatural and restored grasslands differed significantly in nutrient amounts and rhizoctonia assemblages in soil. While Serendipitaceae prevailed in seminatural grasslands with a higher organic matter content, Ceratobasidiaceae were more frequent in phosphorus-rich restored grasslands with increased abundance on younger restored sites. Tulasnellaceae displayed no preference. Germination success in restored grasslands differed significantly between orchid species; two mycorrhizal generalist species germinated with a broad range of rhizoctonias at most restored grasslands, while germination success of specialists was low. Past agricultural practices have a long-lasting effect on soil conditions and orchid mycorrhizal communities. Altered mycorrhizal availability may be the main reason for low germination success of specialist orchid species.


Assuntos
Micorrizas , Orchidaceae , Europa (Continente) , Germinação , Pradaria , Rhizoctonia , Especialização
8.
New Phytol ; 217(3): 1230-1239, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29165806

RESUMO

Analytical methods can offer insights into the structure of biological networks, but mechanisms that determine the structure of these networks remain unclear. We conducted a synthesis based on 111 previously published datasets to assess a range of ecological and evolutionary mechanisms that may influence the plant-associated fungal interaction networks. We calculated the relative host effect on fungal community composition and compared nestedness and modularity among different mycorrhizal types and endophytic fungal guilds. We also assessed how plant-fungal network structure was related to host phylogeny, environmental and sampling properties. Orchid mycorrhizal fungal communities responded most strongly to host identity, but the effect of host was similar among all other fungal guilds. Community nestedness, which did not differ among fungal guilds, declined significantly with increasing mean annual precipitation on a global scale. Orchid and ericoid mycorrhizal fungal communities were more modular than ectomycorrhizal and root endophytic communities, with arbuscular mycorrhizal fungi in an intermediate position. Network properties among a broad suite of plant-associated fungi were largely comparable and generally unrelated to phylogenetic distance among hosts. Instead, network metrics were predominantly affected by sampling and matrix properties, indicating the importance of study design in properly inferring ecological patterns.


Assuntos
Fungos/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Plantas/microbiologia , Especificidade de Hospedeiro , Chuva
9.
Am J Bot ; 105(12): 1995-2007, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30552673

RESUMO

PREMISE OF THE STUDY: Genome duplication is associated with multiple changes at different levels, including interactions with pollinators and herbivores. Yet little is known whether polyploidy may also shape belowground interactions. METHODS: To elucidate potential ploidy-specific interactions with arbuscular mycorrhizal fungi (AMF), we compared mycorrhizal colonization and assembly of AMF communities in roots of diploid and tetraploid Centaurea stoebe s.l. (Asteraceae) co-occurring in a Central European population. In a follow-up greenhouse experiment, we tested inter-cytotype differences in mycorrhizal growth response by combining ploidy, substrate, and inoculation with native AMF in a full-factorial design. KEY RESULTS: All sampled plants were highly colonized by AMF, with the Glomeraceae predominating. AMF-community composition revealed by 454-pyrosequencing reflected the spatial distribution of the hosts, but not their ploidy level or soil characteristics. In the greenhouse experiment, the tetraploids produced more shoot biomass than the diploids did when grown in a more fertile substrate, while no inter-cytotype differences were found in a less fertile substrate. AMF inoculation significantly reduced plant growth and improved P uptake, but its effects did not differ between the cytotypes. CONCLUSIONS: The results do not support our hypotheses that the cytotype structure in a mixed-ploidy population of C. stoebe is mirrored in AMF-community composition and that ploidy-specific fungal communities contribute to cytotype co-existence. Causes and implications of the observed negative growth response to AMF are discussed.


Assuntos
Centaurea/genética , Centaurea/microbiologia , Micorrizas/crescimento & desenvolvimento , Diploide , Fertilizantes , Tetraploidia
10.
Mycorrhiza ; 27(4): 397-406, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28083703

RESUMO

Ericoid mycorrhiza represents a key adaptation of the Ericaceae plants to facilitate their establishment in harsh conditions. The Ericaceae are a large family of flowering plants, with global distribution. However, our current knowledge about the ericoid mycorrhizal fungal diversity and ecology largely relates to the Northern Hemisphere. Our study focused on the assembly of root-associated fungal (RAF) communities of Erica dominans in two types of microhabitats of contrasting moisture along an elevation gradient in Drakensberg mountains in South Africa. RAF communities were determined by 454-sequencing of the internal transcribed spacer (ITS) region of ribosomal DNA. The majority of RAF showed affinity to the orders Helotiales, Pezizales, and Pleosporales. Microhabitat type as well as elevation had significant but weak effect on RAF community composition. We identified two putative ericoid mycorrhizal fungi, the ecological niches of which were differentiated between the studied microhabitats. Our study also provides one of the first comprehensive data about RAF communities of Ericaceae on African continent and shows the occurrence of the most studied ericoid mycorrhizal fungus Pezoloma ericae (belonging to P. ericae aggregate) in roots of Ericaceae host plant in Africa.


Assuntos
Ericaceae/microbiologia , Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Solo , Micorrizas/classificação , África do Sul
11.
Mycorrhiza ; 27(8): 775-789, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28752181

RESUMO

The arbuscular mycorrhizal (AM) grass Calamagrostis epigejos and predominantly ectomycorrhizal (EcM) tree Salix caprea co-occur at post-mining sites spontaneously colonized by vegetation. During succession, AM herbaceous vegetation is replaced by predominantly EcM woody species. To better understand the interaction of AM and EcM plants during vegetation transition, we studied the reciprocal effects of these species' coexistence on their root-associated fungi (RAF). We collected root and soil samples from three different microenvironments: stand of C. epigejos, under S. caprea canopy, and contact zone where roots of the two species interacted. RAF communities and mycorrhizal colonization were determined in sampled roots, and the soil was tested for EcM and AM inoculation potentials. Although the microenvironment significantly affected composition of the RAF communities in both plant species, the effect was greater in the case of C. epigejos RAF communities than in that of S. caprea RAF communities. The presence of S. caprea also significantly decreased AM fungal abundance in soil as well as AM colonization and richness of AM fungi in C. epigejos roots. Changes observed in the abundance and community composition of AM fungi might constitute an important factor in transition from AM-dominated to EcM-dominated vegetation during succession.


Assuntos
Ecossistema , Micorrizas/fisiologia , Poaceae/microbiologia , Salix/microbiologia , Microbiologia do Solo , República Tcheca , Árvores/microbiologia
12.
Mycorrhiza ; 27(4): 355-367, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28039600

RESUMO

Orchid mycorrhizal (OrM) fungi play a crucial role in the ontogeny of orchids, yet little is known about how the structure of OrM fungal communities varies with space and environmental factors. Previous studies suggest that within orchid patches, the distance to adult orchids may affect the abundance of OrM fungi. Many orchid species grow in species-rich temperate semi-natural grasslands, the persistence of which depends on moderate physical disturbances, such as grazing and mowing. The aim of this study was to test whether the diversity, structure and composition of OrM fungal community are influenced by the orchid patches and management intensity in semi-natural grasslands. We detected putative OrM fungi from 0 to 32 m away from the patches of host orchid species (Orchis militaris and Platanthera chlorantha) in 21 semi-natural calcareous grasslands using pyrosequencing. In addition, we assessed different ecological conditions in semi-natural grasslands but primarily focused on the effect of grazing intensity on OrM fungal communities in soil. We found that investigated orchid species were mostly associated with Ceratobasidiaceae and Tulasnellaceae and, to a lesser extent, with Sebacinales. Of all the examined factors, the intensity of grazing explained the largest proportion of variation in OrM fungal as well as total fungal community composition in soil. Spatial analyses showed limited evidence for spatial clustering of OrM fungi and their dependence on host orchids. Our results indicate that habitat management can shape OrM fungal communities, and the spatial distribution of these fungi appears to be weakly structured outside the orchid patches.


Assuntos
Pradaria , Micorrizas/classificação , Orchidaceae/microbiologia , Microbiologia do Solo , Basidiomycota , Estônia , Filogenia
13.
New Phytol ; 229(2): 656-658, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33270913

Assuntos
Micobioma , Solo , Florestas , Fungos
14.
New Phytol ; 205(4): 1608-1618, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25546739

RESUMO

Orchid mycorrhizal (OrM) symbionts play a key role in the growth of orchids, but the temporal variation and habitat partitioning of these fungi in roots and soil remain unclear. Temporal changes in root and rhizosphere fungal communities of Cypripedium calceolus, Neottia ovata and Orchis militaris were studied in meadow and forest habitats over the vegetation period by using 454 pyrosequencing of the full internal transcribed spacer (ITS) region. The community of typical OrM symbionts differed by plant species and habitats. The root fungal community of N. ovata changed significantly in time, but this was not observed in C. calceolus and O. militaris. The rhizosphere community included a low proportion of OrM symbionts that exhibited a slight temporal turnover in meadow habitats but not in forests. Habitat differences in OrM and all fungal associates are largely attributable to the greater proportion of ectomycorrhizal fungi in forests. Temporal changes in OrM fungal communities in roots of certain species indicate selection of suitable fungal species by plants. It remains to be elucidated whether these shifts depend on functional differences inside roots, seasonality, climate or succession.


Assuntos
Basidiomycota/fisiologia , Florestas , Pradaria , Micorrizas/fisiologia , Orchidaceae/microbiologia , Análise de Sequência de DNA/métodos , Endófitos/fisiologia , Estônia , Dados de Sequência Molecular , Fatores de Tempo
16.
Mol Ecol ; 24(8): 1831-43, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25753913

RESUMO

Arbuscular mycorrhizal fungi (AMF) represent an important soil microbial group playing a fundamental role in many terrestrial ecosystems. We explored the effects of deterministic (soil characteristics, host plant life stage, neighbouring plant communities) and stochastic processes on AMF colonization, richness and community composition in roots of Knautia arvensis (Dipsacaceae) plants from three serpentine grasslands and adjacent nonserpentine sites. Methodically, the study was based on 454-sequencing of the ITS region of rDNA. In total, we detected 81 molecular taxonomical operational units (MOTUs) belonging to the Glomeromycota. Serpentine character of the site negatively influenced AMF root colonization, similarly as higher Fe concentration. AMF MOTUs richness linearly increased along a pH gradient from 3.5 to 5.8. Contrary, K and Cr soil concentration had a negative influence on AMF MOTUs richness. We also detected a strong relation between neighbouring plant community composition and AMF MOTUs richness. Although spatial distance between the sampled sites (c. 0.3-3 km) contributed to structuring AMF communities in K. arvensis roots, environmental parameters were key factors in this respect. In particular, the composition of AMF communities was shaped by the complex of serpentine conditions, pH and available soil Ni concentration. The composition of AMF communities was also dependent on host plant life stage (vegetative vs. generative). Our study supports the dominance of deterministic factors in structuring AMF communities in heterogeneous environment composed of an edaphic mosaic of serpentine and nonserpentine soils.


Assuntos
Ecossistema , Pradaria , Micorrizas/genética , Microbiologia do Solo , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Dipsacaceae/microbiologia , Micorrizas/classificação , Filogenia , Raízes de Plantas/microbiologia , Solo/química
17.
Environ Microbiome ; 19(1): 8, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38268048

RESUMO

BACKGROUND: Below-ground microbes mediate key ecosystem processes and play a vital role in plant nutrition and health. Understanding the composition of the belowground microbiome is therefore important for maintaining ecosystem stability. The structure of the belowground microbiome is largely determined by individual plants, but it is not clear how far their influence extends and, conversely, what the influence of other plants growing nearby is. RESULTS: To determine the extent to which a focal host plant influences its soil and root microbiome when growing in a diverse community, we sampled the belowground bacterial and fungal communities of three plant species across a primary successional grassland sequence. The magnitude of the host effect on its belowground microbiome varied among microbial groups, soil and root habitats, and successional stages characterized by different levels of diversity of plant neighbours. Soil microbial communities were most strongly structured by sampling site and showed significant spatial patterns that were partially driven by soil chemistry. The influence of focal plant on soil microbiome was low but tended to increase with succession and increasing plant diversity. In contrast, root communities, particularly bacterial, were strongly structured by the focal plant species. Importantly, we also detected a significant effect of neighbouring plant community composition on bacteria and fungi associating with roots of the focal plants. The host influence on root microbiome varied across the successional grassland sequence and was highest in the most diverse site. CONCLUSIONS: Our results show that in a species rich natural grassland, focal plant influence on the belowground microbiome depends on environmental context and is modulated by surrounding plant community. The influence of plant neighbours is particularly pronounced in root communities which may have multiple consequences for plant community productivity and stability, stressing the importance of plant diversity for ecosystem functioning.

18.
Environ Microbiome ; 19(1): 42, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902816

RESUMO

BACKGROUND: Grasslands provide fundamental ecosystem services that are supported by their plant diversity. However, the importance of plant taxonomic diversity for the diversity of other taxa in grasslands remains poorly understood. Here, we studied the associations between plant communities, soil chemistry and soil microbiome in a wooded meadow of Certoryje (White Carpathians, Czech Republic), a European hotspot of plant species diversity. RESULTS: High plant diversity was associated with treeless grassland areas with high primary productivity and high contents of soil nitrogen and organic carbon. In contrast, low plant diversity occurred in grasslands near solitary trees and forest edges. Fungal communities differed between low-diversity and high-diversity grasslands more strongly than bacterial communities, while the difference in arbuscular mycorrhizal fungi (AMF) depended on their location in soil versus plant roots. Compared to grasslands with low plant diversity, high-diversity plant communities had a higher diversity of fungi including soil AMF, a different fungal and soil AMF community composition and higher bacterial and soil AMF biomass. Root AMF composition differed only slightly between grasslands with low and high plant diversity. Trees dominated the belowground plant community in low-diversity grasslands, which influenced microbial diversity and composition. CONCLUSIONS: The determinants of microbiome abundance and composition in grasslands are complex. Soil chemistry mainly influenced bacterial communities, while plant community type mainly affected fungal (including AMF) communities. Further studies on the functional roles of microbial communities are needed to understand plant-soil-microbe interactions and their involvement in grassland ecosystem services.

19.
Ecology ; 105(6): e4312, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38666421

RESUMO

An increasing number of studies of above-belowground interactions provide a fundamental basis for our understanding of the coexistence between plant and soil communities. However, we lack empirical evidence to understand the directionality of drivers of plant and soil communities under natural conditions: 'Are soil microorganisms driving plant community functioning or do they adapt to the plant community?' In a field experiment in an early successional dune ecosystem, we manipulated soil communities by adding living (i.e., natural microbial communities) and sterile soil inocula, originating from natural ecosystems, and examined the annual responses of soil and plant communities. The experimental manipulations had a persistent effect on the soil microbial community with divergent impacts for living and sterile soil inocula. The plant community was also affected by soil inoculation, but there was no difference between the impacts of living and sterile inocula. We also observed an increasing convergence of plant and soil microbial composition over time. Our results show that alterations in soil abiotic and biotic conditions have long-term effects on the composition of both plant and soil microbial communities. Importantly, our study provides direct evidence that soil microorganisms are not "drivers" of plant community dynamics. We found that soil fungi and bacteria manifest different community assemblies in response to treatments. Soil fungi act as "passengers," that is, soil microorganisms reflect plant community dynamics but do not alter it, whereas soil bacteria are neither "drivers" nor "passengers" of plant community dynamics in early successional ecosystems. These results are critical for understanding the community assembly of plant and soil microbial communities under natural conditions and are directly relevant for ecosystem management and restoration.


Assuntos
Bactérias , Ecossistema , Fungos , Plantas , Microbiologia do Solo , Fungos/fisiologia , Bactérias/classificação , Plantas/microbiologia
20.
Mol Ecol ; 22(21): 5271-7, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24112409

RESUMO

The nuclear ribosomal internal transcribed spacer (ITS) region is the formal fungal barcode and in most cases the marker of choice for the exploration of fungal diversity in environmental samples. Two problems are particularly acute in the pursuit of satisfactory taxonomic assignment of newly generated ITS sequences: (i) the lack of an inclusive, reliable public reference data set and (ii) the lack of means to refer to fungal species, for which no Latin name is available in a standardized stable way. Here, we report on progress in these regards through further development of the UNITE database (http://unite.ut.ee) for molecular identification of fungi. All fungal species represented by at least two ITS sequences in the international nucleotide sequence databases are now given a unique, stable name of the accession number type (e.g. Hymenoscyphus pseudoalbidus|GU586904|SH133781.05FU), and their taxonomic and ecological annotations were corrected as far as possible through a distributed, third-party annotation effort. We introduce the term 'species hypothesis' (SH) for the taxa discovered in clustering on different similarity thresholds (97-99%). An automatically or manually designated sequence is chosen to represent each such SH. These reference sequences are released (http://unite.ut.ee/repository.php) for use by the scientific community in, for example, local sequence similarity searches and in the QIIME pipeline. The system and the data will be updated automatically as the number of public fungal ITS sequences grows. We invite everybody in the position to improve the annotation or metadata associated with their particular fungal lineages of expertise to do so through the new Web-based sequence management system in UNITE.


Assuntos
Bases de Dados de Ácidos Nucleicos , Fungos/classificação , Filogenia , Código de Barras de DNA Taxonômico , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Fungos/genética , Internet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA