RESUMO
Phytochemicals as therapeutic alternatives can have a fundamental impact on the various stages of inflammation and its resolution. Prunetin is a naturally occurring isoflavone and has been claimed to have numerous therapeutic potentials. The objective of this study is preparation, characterization, and toxicity evaluation of microemulsion formulation containing prunetin (PMF) for potential oral applications. With this research, it was targeted to emphasize the way of improving the therapeutic efficacy of natural biomolecules with a nontoxic and effective formulation. In the study, the pseudo-ternary phase diagram was developed and PMF was characterized by conductivity, droplet size, viscosity and pH. Effects against to cytokines (IL-1ß and IL-6) and TNF-α levels of the PMF were determined by ELISA technique. Genotoxicity and acute oral toxicity tests were carried out according to OECD guidelines. The results showed that PMF is a colloid system that reduced proinflammatory cytokine levels in LPS-induced macrophage cells compared to the control group. PMF demonstrated no mutagenic activity against TA98, TA100, TA1535, and TA1537 Salmonella strains. The in vivo oral acute toxicity test results indicated that PMF did not show mortality or significant side effects even at 2000 mg/kg bw. This study represents PMF showed a good safety profile in animal study. It is thought that this formulation may have anti-inflammatory potential with further in vivo testing.
Assuntos
Anti-Inflamatórios , Isoflavonas , Animais , Anti-Inflamatórios/farmacologia , Isoflavonas/farmacologia , Citocinas , MutagênicosRESUMO
Streptozotocin (STZ) is used as a diabetes-inducing agent in experimental animal studies. However, it is known that STZ-induced diabetic animals show significant increases in oxidative stress parameters and neurodegeneration besides their blood glucose level. In this study, the acute and subacute toxic effects of STZ on the liver, sciatic nerve, and brain tissues were investigated in vivo rat model. Sprague-Dawley rats were divided into two groups; while 50 mg/kg STZ was administered ip to the STZ group, only saline was administered to the control group. After STZ administration, three units (100 U/mL) of subcutaneous insulin glargine were applied daily to prevent the formation of diabetes. At 24 h, 1,2, and 4 weeks after applications, rats from each group were sacrificed and tissues were removed under anesthesia. At the end of the study, compared to the control, a significant decrease in SOD and GST activity and an increase in lipid peroxidation were detected in the liver and sciatic tissues of rats in the STZ-treated group in the first 24h. Considering the TUNEL, NFκB, and NOS2 expressions, it was noted that while the effects of STZ on the liver were observed in the acute stage (24h), it had subacute effects on the brain. When apoptosis-related gene expression (Bcl-2, Bax, CASP3, CASP8, CASP9, TNF-α) and immunohistochemistry were evaluated, the apoptotic effect of STZ was observed mostly in sciatic nerve tissues. Within the scope of the study, it was revealed that STZ did not only show selective toxicity to pancreatic ß cells but also very toxic to other tissues and organs.
RESUMO
OBJECTIVE: The objective of this study was to develop radiolabeled ibuprofen (99mTc-ibu) for imaging and discrimination of inflammation and infection and compare its biodistribution in two different animal models. SIGNIFICANCE: The development of radiolabeled ibuprofen as an imaging agent for inflammation and infection may have significant clinical implications for the diagnosis and management of various inflammatory and infectious diseases. This study provides a promising approach to the detection of sterile infections. METHODS: Ibuprofen was radiolabeled with 99mTc using the stannous chloride method with a yield of 99.05 ± 0.83% (n = 5). The in vivo biological behavior of radiolabeled ibuprofen was determined in Wistar albino rat models of sterile inflammation and bacterial infection with Staphylococcus aureus gram-positive bacteria. Biodistribution studies were carried out at different time points, and the results were compared between the two animal models. RESULTS: The uptake of 99mTc-ibu in sterile inflammation sites at all time points was higher than that in the infection sites. This suggests that 99mTc-ibu can be used to discriminate between sterile inflammation and bacterial infection. CONCLUSIONS: The results of this study suggest that the detection of sterile infections with 99mTc-ibu is possible and highly encouraging.
Assuntos
Infecções Estafilocócicas , Tecnécio , Ratos , Animais , Ibuprofeno , Distribuição Tecidual , Cintilografia , Infecções Estafilocócicas/diagnóstico por imagem , Ratos Wistar , Modelos Animais , Inflamação/diagnóstico por imagem , Compostos RadiofarmacêuticosRESUMO
BACKGROUND: Urinary bladder cancer (UBC) is considered one of the most prevalent malignant tumors worldwide. Complementary and integrative approaches for the treatment of bladder cancer, such as the intake of isoflavonoid phytoestrogens, are of increasing interest due to the risk of mortality and long-term morbidity associated with surgical procedures. The biological effects of prunetin, one of the less-studied phytoestrogens, have not yet been examined in this respect. Therefore, this study aimed to explore the efficacy of prunetin on UBC cells (RT-4). METHODS AND RESULTS: The cytotoxicity and nitric oxide synthase activities of prunetin were determined in cell cultures. The expression of apoptosis-related genes was determined with RT-PCR. Cell cycle assays were performed using a flow cytometer and cellular apoptotic rate was measured. The results suggested that prunetin has cytotoxic effects at 21.11 µg/mL on RT-4 cells. Flow cytometry analysis showed that prunetin induced apoptosis and arrested th cell cycle in the G0/G1 phase. Prunetin exposure was associated with increases in CASP3 and TNF-α gene expression in RT-4 cells at doses of 21.11 and 42.22 µg/mL, respectively. Strong nitric oxide inhibition was observed at IC50 of 5.18 µg/mL under macrophage mediated inflammatory circumstances. CONCLUSIONS: Prunetin possesses anti-cancer properties and may be a candidate compound for the prevention of UBC. This is the first study that evaluated prunetin for its in vitro antitumor activities, clarified its possible apoptotic molecular mechanism and provided novel insights into its anti-inflammatory nature and effects on the expression of related key genes.
Assuntos
Antineoplásicos/farmacologia , Apoptose , Isoflavonas/farmacologia , Óxido Nítrico/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Células A549 , Anti-Inflamatórios/farmacologia , Antineoplásicos/uso terapêutico , Células CACO-2 , Caspase 3/genética , Ciclo Celular , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Isoflavonas/uso terapêutico , Células MCF-7 , Masculino , Neoplasias/tratamento farmacológico , Células PC-3 , Fator de Necrose Tumoral alfa/genética , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/fisiopatologiaRESUMO
5-Fluorouracil is one of the first line drugs for the systemic therapy of solid tumors like breast, colorectal, oesophageal, stomach, pancreatic, head and neck. It could be shown that sugars can improve the absorption across cell membranes and can help to bypass some pharmacokinetic problems. Carbohydrates as most common organic molecules are an important issue of plant and animal metabolisms. They are non toxic and have important duties in the body like participating in DNA and RNA synthesis and being responsible for energy production. In addition, they have many hydroxyl, aldehyde and ketone groups that attract attention for synthesis as a potential drug derivative. 1,2,3,-Triazole compounds have also important role in heterocyclic chemistry because of their pharmaceutical properties and their high reactivity, which could be used as a building block for complex chemical compounds. In this study, following the "Click Reaction" of 5-FU and tetra-O-acetylglycose the 5-fluorouracil derivative 1-[{1'-(2â³,3â³,4â³,6â³-tetra-O-acetyl-ß-d-glycopyronosyl)-1'H-1',2',3'-triazole-4'-yl} methyl]5-fluorouracil was synthesized. Following, a micellar formulation of 5-Fluorouracil derivative was prepared and characterized in terms of particle size, polydispersity index, zeta potential, refractive index and pH. Furthermore, the cytotoxicity and mutagenicity of the 5-fluorouracil derivative was investigated using an in vitro cell culture model and the AMES test. According to the results of this study, the novel 5-fluorouracil derivative could be a drug candidate for the therapy of cancer and needs further in vivo investigations.
RESUMO
5-Fluorouracil is a heterocyclic aromatic organic compound, and it is commonly used as a chemotherapeutic agent in many cancers. The present goal is to analyze and characterize the physicochemical and biological properties of a new therapeutic formulation of 5-FUD-Gal under simulated chronic wound and oxidative stress conditions. After synthesis of a new 5-fluorouracil derivative, preparation and characterization of the formulation were carried out. The antiangiogenic effect, wound healing, and oxidative stress responses were conducted with a HET-CAM assay and in vitro cell culture technique. The results initially demonstrated that 5-FUD-Gal synthesized by a series of reactions and the SLN formulation were prepared successfully. A strong cell protective effect above 98% cell viability was detected at 20 µM at 48 h. The wound closure of the HaCaT scratch assay was calculated to be 90.12 and 98.98% at 10 and 20 µM concentrations, respectively, at 48 h. Moreover, the strongest effect of 5-FUD-Gal-F was observed at 20 µM concentration on chicken embryos. This study provides novel insights that a new derivative of semisynthetic 5-FUD-Gal-F can be further evaluated as a therapeutic chemical compound in cancer disease.
RESUMO
Microbial secondary metabolites, which play a pivotal role in struggling with infectious diseases, are the new source for controlling bacterial contaminations and possess a strong antimicrobial potential. The present study is designed to evaluate the in vitro and in vivo bactericidal activities of prodigiosin against Staphylococcus aureus. For this purpose, Serratia marcescens was used to produce prodigiosin. Characterization of the prodigiosin was carried out using NMR. In addition, bioautographic detection of prodigiosin was detected by TLC. Antibacterial assays, in vivo epicutaneous infection tests, swap analyses, and histopathological examinations were determined. The results revealed that prodigiosin was detected by NMR and TLC. According to antimicrobial susceptibility tests, prodigiosin is an efficient bactericidal compound that demonstrated strong antibacterial activity toward S. aureus. In vivo, animal studies determined that the strong inhibition of S. aureus-caused epidermal infection occurs by prodigiosin at 48 h. Histopathological results showed that S. aureus + prodigiosin skin sections consist of improved and healthy tissues without any infection area compared with the S. aureus and control groups. The in vivo study verified the antibacterial results with swap analyses, and histopathological findings showed that prodigiosin is a promising microbial metabolite effective against S. aureus infection. This study proved that prodigiosin with excellent bioactivity exhibited antibacterial properties, which might possess massive potential for new therapeutic approaches using micro-organisms.