Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
EMBO Rep ; 22(8): e52785, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34224201

RESUMO

Unveiling the molecular mechanisms of tissue remodelling following injury is imperative to elucidate its regenerative capacity and aberrant repair in disease. Using different omics approaches, we identified enhancer of zester homolog 2 (EZH2) as a key regulator of fibrosis in injured lung epithelium. Epithelial injury drives an enrichment of nuclear transforming growth factor-ß-activated kinase 1 (TAK1) that mediates EZH2 phosphorylation to facilitate its liberation from polycomb repressive complex 2 (PRC2). This process results in the establishment of a transcriptional complex of EZH2, RNA-polymerase II (POL2) and nuclear actin, which orchestrates aberrant epithelial repair programmes. The liberation of EZH2 from PRC2 is accompanied by an EZH2-EZH1 switch to preserve H3K27me3 deposition at non-target genes. Loss of epithelial TAK1, EZH2 or blocking nuclear actin influx attenuates the fibrotic cascade and restores respiratory homeostasis. Accordingly, EZH2 inhibition significantly improves outcomes in a pulmonary fibrosis mouse model. Our results reveal an important non-canonical function of EZH2, paving the way for new therapeutic interventions in fibrotic lung diseases.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Histonas , Animais , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Fibrose , Histonas/metabolismo , Camundongos , Fosforilação , Complexo Repressor Polycomb 2/metabolismo
2.
Mol Pharmacol ; 93(4): 288-296, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29367258

RESUMO

G-protein-coupled receptors (GPCRs) mediate multiple signaling pathways in the cell, depending on the agonist that activates the receptor and multiple cellular factors. Agonists that show higher potency to specific signaling pathways over others are known as "biased agonists" and have been shown to have better therapeutic index. Although biased agonists are desirable, their design poses several challenges to date. The number of assays to identify biased agonists seems expensive and tedious. Therefore, computational methods that can reliably calculate the possible bias of various ligands ahead of experiments and provide guidance, will be both cost and time effective. In this work, using the mechanism of allosteric communication from the extracellular region to the intracellular transducer protein coupling region in GPCRs, we have developed a computational method to calculate ligand bias ahead of experiments. We have validated the method for several ß-arrestin-biased agonists in ß2-adrenergic receptor (ß2AR), serotonin receptors 5-HT1B and 5-HT2B and for G-protein-biased agonists in the κ-opioid receptor. Using this computational method, we also performed a blind prediction followed by experimental testing and showed that the agonist carmoterol is ß-arrestin-biased in ß2AR. Additionally, we have identified amino acid residues in the biased agonist binding site in both ß2AR and κ-opioid receptors that are involved in potentiating the ligand bias. We call these residues functional hotspots, and they can be used to derive pharmacophores to design biased agonists in GPCRs.


Assuntos
Desenho de Fármacos , Simulação de Dinâmica Molecular/tendências , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Humanos , Ligantes , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/química , Receptores Opioides kappa/metabolismo
3.
J Pharmacol Exp Ther ; 337(3): 600-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21357659

RESUMO

ß(2)-Adrenoceptor (ß(2)-AR) agonists are powerful bronchodilators and play a pivotal role in the management of pulmonary obstructive diseases, such as asthma and chronic obstructive pulmonary disease. Although these agents first were used many years ago, progress in drug development has resulted in better tolerated, long-acting ß(2)-AR agonists (LABAs), such as formoterol and salmeterol. Although LABAs have been on the market for several years, relatively little is known on the rationale(s) behind their long duration of action. In this study, we focused on olodaterol (previously known as BI1744CL), a novel inhaled LABA, which provides a bronchodilating effect lasting 24 h and is currently in Phase III clinical trials. To understand the rationale behind its long duration of action, different aspects of olodaterol were analyzed (i.e., its lipophilicity and propensity to accumulate in the lipid bilayer as well as its tight binding to the ß(2)-AR). In line with its physicochemical properties, olodaterol associated moderately with lipid bilayers. Instead, kinetic as well as equilibrium binding studies indicated the presence of a stable [(3)H]olodaterol/ß(2)-AR complex with a dissociation half-life of 17.8 h due to ternary complex formation. The tight binding of olodaterol to the human ß(2)-AR and stabilization of the ternary complex were confirmed in functional experiments monitoring adenylyl cyclase activity after extensive washout. Taken together, binding, kinetic, and functional data support the existence of a stable complex with the ß(2)-AR that, with a dissociation half-life >17 h, might indeed be a rationale for the 24-h duration of action of olodaterol.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacocinética , Asma/tratamento farmacológico , Benzoxazinas/farmacocinética , Broncodilatadores/farmacocinética , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Receptores Adrenérgicos beta 2/metabolismo , Administração por Inalação , Agonistas de Receptores Adrenérgicos beta 2/administração & dosagem , Agonistas de Receptores Adrenérgicos beta 2/química , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Albuterol/administração & dosagem , Albuterol/análogos & derivados , Albuterol/química , Albuterol/farmacocinética , Albuterol/farmacologia , Animais , Benzoxazinas/administração & dosagem , Benzoxazinas/química , Benzoxazinas/farmacologia , Sítios de Ligação , Broncodilatadores/administração & dosagem , Broncodilatadores/química , Broncodilatadores/farmacologia , Cricetinae , Etanolaminas/administração & dosagem , Etanolaminas/química , Etanolaminas/farmacocinética , Etanolaminas/farmacologia , Fumarato de Formoterol , Meia-Vida , Humanos , Bicamadas Lipídicas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Receptores Adrenérgicos beta 1/metabolismo , Xinafoato de Salmeterol
4.
Br J Pharmacol ; 172(14): 3537-47, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25824824

RESUMO

BACKGROUND AND PURPOSE: ß2 -adrenoceptor agonists are widely used in the management of obstructive airway diseases. Besides their bronchodilatory effect, several studies suggest inhibitory effects on various aspects of inflammation. The aim of our study was to determine the efficacy of the long-acting ß2 -adrenoceptor agonist olodaterol to inhibit pulmonary inflammation and to elucidate mechanism(s) underlying its anti-inflammatory actions. EXPERIMENTAL APPROACH: Olodaterol was tested in murine and guinea pig models of cigarette smoke- and LPS-induced lung inflammation. Furthermore, effects of olodaterol on the LPS-induced pro-inflammatory mediator release from human parenchymal explants, CD11b adhesion molecule expression on human granulocytes TNF-α release from human whole blood and on the IL-8-induced migration of human peripheral blood neutrophils were investigated. KEY RESULTS: Olodaterol dose-dependently attenuated cell influx and pro-inflammatory mediator release in murine and guinea pig models of pulmonary inflammation. These anti-inflammatory effects were observed at doses relevant to their bronchodilatory efficacy. Mechanistically, olodaterol attenuated pro-inflammatory mediator release from human parenchymal explants and whole blood and reduced expression of CD11b adhesion molecules on granulocytes, but without direct effects on IL-8-induced neutrophil transwell migration. CONCLUSIONS AND IMPLICATIONS: This is the first evidence for the anti-inflammatory efficacy of a ß2 -adrenoceptor agonist in models of lung inflammation induced by cigarette smoke. The long-acting ß2 -adrenoceptor agonist olodaterol attenuated pulmonary inflammation through mechanisms that are separate from direct inhibition of bronchoconstriction. Furthermore, the in vivo data suggest that the anti-inflammatory properties of olodaterol are maintained after repeated dosing for 4 days.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Benzoxazinas/farmacologia , Inflamação/tratamento farmacológico , Pneumopatias/tratamento farmacológico , Pneumopatias/patologia , Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/administração & dosagem , Animais , Benzoxazinas/administração & dosagem , Movimento Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Granulócitos/efeitos dos fármacos , Granulócitos/metabolismo , Cobaias , Humanos , Inflamação/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Pneumopatias/metabolismo , Camundongos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Fumar , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA