Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Oecologia ; 201(3): 813-825, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36869183

RESUMO

Arthropods respond to vegetation in multiple ways since plants provide habitat and food resources and indicate local abiotic conditions. However, the relative importance of these factors for arthropod assemblages is less well understood. We aimed to disentangle the effects of plant species composition and environmental drivers on arthropod taxonomic composition and to assess which aspects of vegetation contribute to the relationships between plant and arthropod assemblages. In a multi-scale field study in Southern Germany, we sampled vascular plants and terrestrial arthropods in typical habitats of temperate landscapes. We compared independent and shared effects of vegetation and abiotic predictors on arthropod composition distinguishing between four large orders (Lepidoptera, Coleoptera, Hymenoptera, Diptera), and five functional groups (herbivores, pollinators, predators, parasitoids, detritivores). Across all investigated groups, plant species composition explained the major fraction of variation in arthropod composition, while land-cover composition was another important predictor. Moreover, the local habitat conditions depicted by the indicator values of the plant communities were more important for arthropod composition than trophic relationships between certain plant and arthropod species. Among trophic groups, predators showed the strongest response to plant species composition, while responses of herbivores and pollinators were stronger than those of parasitoids and detritivores. Our results highlight the relevance of plant community composition for terrestrial arthropod assemblages across multiple taxa and trophic levels and emphasize the value of plants as a proxy for characterizing habitat conditions that are hardly accessible to direct environmental measurements.


Assuntos
Artrópodes , Besouros , Animais , Artrópodes/fisiologia , Biodiversidade , Ecossistema , Herbivoria , Plantas
2.
Proc Natl Acad Sci U S A ; 117(20): 10921-10926, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32366661

RESUMO

Flower biomass varies widely across the angiosperms. Each plant species invests a given amount of biomass to construct its sex organs. A comparative understanding of how this limited resource is partitioned among primary (male and female structures) and secondary (petals and sepals) sexual organs on hermaphrodite species can shed light on general evolutionary processes behind flower evolution. Here, we use allometries relating different flower biomass components across species to test the existence of broad allocation patterns across the angiosperms. Based on a global dataset with flower biomass spanning five orders of magnitude, we show that heavier angiosperm flowers tend to be male-biased and invest strongly in petals to promote pollen export, while lighter flowers tend to be female-biased and invest more in sepals to insure their own seed set. This result demonstrates that larger flowers are not simple carbon copies of small ones, indicating that sexual selection via male-male competition is an important driver of flower biomass evolution and sex allocation strategies across angiosperms.


Assuntos
Evolução Biológica , Flores/fisiologia , Magnoliopsida/fisiologia , Biomassa , Gentiana , Lepidium , Nymphaea , Orchidaceae , Pólen , Polinização , Sementes , Seleção Genética , Especificidade da Espécie
3.
J Environ Manage ; 344: 118512, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37384992

RESUMO

Poor regeneration of natural vegetation is a major factor contributing to the degradation of tropical coral islands. Soil seed banks (SSB) are important for maintaining the resilience of plant communities. However, the community characteristics and spatial distribution of SSBs and the controlling factors along human disturbance on coral islands are unclear. To fill this gap, we measured the community structure and spatial distributions of forest SSBs on three coral islands in the South China Sea, with varying degrees of human disturbance. The results showed that strong human disturbance increased the diversity, richness, and density of SSBs, as well as increased the richness of invasive species. With increased human disturbance, the heterogeneity pattern of SSBs spatial distribution changed from difference between forest east and west to forest center and edge. The similarity between the SSBs and above-ground vegetation also increased, and the distribution of invasive species extended from the edge to the central area of the forests, demonstrating that human disturbance limited the outward dispersal of seeds of resident species but increased the inward dispersal of seeds of invasive species. Interaction between soil properties, plant characteristics, and human disturbance explained 23-45% of the spatial variation of forest SSBs on the coral islands. However, human disturbance reduced the correlations of plant communities and spatial distribution of SSBs with soil factors (i.e., available phosphorus and total nitrogen) and increased the correlations of the community characteristics of SSB with landscape heterogeneity index, road distance, and shrub and litter cover. Resident seed dispersal on tropical coral islands might be enhanced by reducing building height, constructing buildings in down-wind locations, and preserving corridors that support animal movement among forest fragments.


Assuntos
Antozoários , Ecossistema , Animais , Humanos , Solo/química , Banco de Sementes , Efeitos Antropogênicos , Ilhas , Florestas , Plantas , Sementes , Espécies Introduzidas
4.
Ecol Lett ; 25(10): 2177-2188, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35953880

RESUMO

Why sex has evolved and is maintained is an open question in evolutionary biology. The Red Queen hypothesis predicts that host lineages subjected to more intense parasite pressure should invest more in sexual reproduction to continuously create novel defences against their rapidly evolving natural enemies. In this comparative study across the angiosperms, we show that hermaphrodite plant species associated with higher species richness of insect herbivores evolved flowers with higher biomass allocation towards the male sex, an indication of their greater outcrossing effort. This pattern remained robust after controlling for key vegetative, reproductive and biogeographical traits, suggesting that long-term herbivory pressure is a key factor driving the selfing-outcrossing gradient of higher plants. Although flower evolution is frequently associated with mutualistic pollinators, our findings support the Red Queen hypothesis and suggest that insect herbivores drive the sexual strategies of flowering plants and their genetic diversity.


Assuntos
Herbivoria , Magnoliopsida , Animais , Flores , Insetos , Polinização , Reprodução
5.
Oecologia ; 199(2): 407-417, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35711067

RESUMO

Higher temperatures can increase metabolic rates and carbon demands of invertebrate herbivores, which may shift leaf-chewing herbivory among plant functional groups differing in C:N (carbon:nitrogen) ratios. Biotic factors influencing herbivore species richness may modulate these temperature effects. Yet, systematic studies comparing leaf-chewing herbivory among plant functional groups in different habitats and landscapes along temperature gradients are lacking. This study was conducted on 80 plots covering large gradients of temperature, plant richness and land use in Bavaria, Germany. We investigated proportional leaf area loss by chewing invertebrates ('herbivory') in three plant functional groups on open herbaceous vegetation. As potential drivers, we considered local mean temperature (range 8.4-18.8 °C), multi-annual mean temperature (range 6.5-10.0 °C), local plant richness (species and family level, ranges 10-51 species, 5-25 families), adjacent habitat type (forest, grassland, arable field, settlement), proportion of grassland and landscape diversity (0.2-3 km scale). We observed differential responses of leaf-chewing herbivory among plant functional groups in response to plant richness (family level only) and habitat type, but not to grassland proportion, landscape diversity and temperature-except for multi-annual mean temperature influencing herbivory on grassland plots. Three-way interactions of plant functional group, temperature and predictors of plant richness or land use did not substantially impact herbivory. We conclude that abiotic and biotic factors can assert different effects on leaf-chewing herbivory among plant functional groups. At present, effects of plant richness and habitat type outweigh effects of temperature and landscape-scale land use on herbivory among legumes, forbs and grasses.


Assuntos
Herbivoria , Mastigação , Animais , Biodiversidade , Carbono , Ecossistema , Herbivoria/fisiologia , Humanos , Invertebrados/fisiologia , Plantas , Temperatura
6.
J Environ Manage ; 311: 114846, 2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35290956

RESUMO

Roadsides, in particular those being species-rich and of conservation value, are considered to improve landscape permeability by providing corridors among habitat patches and by facilitating species' dispersal. However, little is known about the potential connectivity offered by such high-value roadsides. Using circuit theory, we modelled connectivity provided by high-value roadsides in landscapes with low or high permeability in south-central Sweden, with 'permeability' being measured by the area of semi-natural grasslands. We modelled structural connectivity and, for habitat generalists and specialists, potential functional connectivity focusing on butterflies. We further assessed in which landscapes grassland connectivity is best enhanced through measures for expanding the area of high-value roadsides. Structural connectivity provided by high-value roadsides resulted in similar patterns to those of a functional approach, in which we modelled habitat generalists. In landscapes with low permeability, all target species showed higher movements within compared to between grasslands using high-value roadsides. In landscapes with high permeability, grassland generalists and specialists showed the same patterns, whereas for habitat generalists, connectivity provided by high-value roadsides and grasslands was similar. Increasing the ratio of high-value roadsides can thus enhance structural and functional connectivity in landscapes with low permeability. In contrast, in landscapes with high permeability, roadsides only supported movement of specialised species. Continuous segments of high-value roadsides are most efficient to increase connectivity for specialists, whereas generalists can utilize also short segments of high-value roadsides acting as stepping-stones. Thus, land management should focus on the preservation and restoration of existing semi-natural grasslands. Management for enhancing grassland connectivity through high-value roadsides should aim at maintaining and creating high-value roadside vegetation, preferably in long continuous segments, especially in landscapes with low permeability.

8.
Environ Manage ; 58(3): 465-75, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27272017

RESUMO

Land managers face the challenge to set priorities in monitoring and managing non-native plant species, as resources are limited and not all non-natives become invasive. Existing frameworks that have been proposed to rank non-native species require extensive information on their distribution, abundance, and impact. This information is difficult to obtain and often not available for many species and regions. National watch or priority lists are helpful, but it is questionable whether they provide sufficient information for environmental management on a regional scale. We therefore propose a decision tree that ranks species based on more simple albeit robust information, but still provides reliable management recommendations. To test the decision tree, we collected and evaluated distribution data from non-native plants in highland grasslands of Southern Brazil. We compared the results with a national list from the Brazilian Invasive Species Database for the state to discuss advantages and disadvantages of the different approaches on a regional scale. Out of 38 non-native species found, only four were also present on the national list. If management would solely rely on this list, many species that were identified as spreading based on the decision tree would go unnoticed. With the suggested scheme, it is possible to assign species to active management, to monitoring, or further evaluation. While national lists are certainly important, management on a regional scale should employ additional tools that adequately consider the actual risk of non-natives to become invasive.


Assuntos
Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos , Pradaria , Espécies Introduzidas , Poaceae/crescimento & desenvolvimento , Brasil , Bases de Dados Factuais , Medição de Risco
9.
Ambio ; 44(2): 154-62, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24973054

RESUMO

Ecological science contributes to solving a broad range of environmental problems. However, lack of ecological literacy in practice often limits application of this knowledge. In this paper, we highlight a critical but often overlooked demand on ecological literacy: to enable professionals of various careers to apply scientific knowledge when faced with environmental problems. Current university courses on ecology often fail to persuade students that ecological science provides important tools for environmental problem solving. We propose problem-based learning to improve the understanding of ecological science and its usefulness for real-world environmental issues that professionals in careers as diverse as engineering, public health, architecture, social sciences, or management will address. Courses should set clear learning objectives for cognitive skills they expect students to acquire. Thus, professionals in different fields will be enabled to improve environmental decision-making processes and to participate effectively in multidisciplinary work groups charged with tackling environmental issues.


Assuntos
Ecologia/educação , Ecologia/tendências , Resolução de Problemas , Aprendizagem Baseada em Problemas/tendências , Ecologia/normas , Humanos , Aprendizagem Baseada em Problemas/normas
10.
Am Nat ; 181(1): E17-27, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23234854

RESUMO

Successional phases describe changes in ecological communities that proceed in steps rather than continuously. Despite their importance for the understanding of ecosystem development, there still exists no reliable definition of phases and no quantitative measure of phase transitions. In order to obtain these data, we investigated primary succession in an artificial catchment (6 ha) in eastern Germany over a period of 6 years. The data set consists of records of plant species and their cover values, and initial substrate properties, both from plots in a regular grid (20 m × 20 m) suitable for spatial data analysis. Community assembly was studied by analyses of species co-occurrence and nestedness. Additionally, we correlated lognormal and log series distributions of species abundance to each community. We here introduce a new general method for detection of successional phases based on the degree of transient spatial homogeneity in the study system. Spatially coherent vegetation patterns revealed nonoverlapping partitions within this sequence of primary succession and were characterized as two distinct ecological phases. Patterns of species co-occurrence were increasingly less random, and hence the importance of demographic stochasticity and neutral community assembly decreased during the study period. Our findings highlight the spatial dimension of successional phases and quantify the degree of change between these steps. They are an element for advancing a more reliable terminology of ecological successions.


Assuntos
Biota , Ecossistema , Fenômenos Fisiológicos Vegetais , Ecologia , Extinção Biológica , Alemanha , Modelos Biológicos , Dinâmica Populacional
11.
Ann Bot ; 112(9): 1921-30, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24214934

RESUMO

BACKGROUND AND AIMS: Local adaptation enables plant species to persist under different environmental conditions. Evolutionary change can occur rapidly in invasive annual species and has been shown to lead to local adaptation. However, the patterns and mechanisms of local adaptation in invasive species along colonization sequences are not yet understood. Thus, in this study the alien annual Impatiens glandulifera was used to investigate local adaptation to distinct habitats that have been consecutively invaded in central Europe. METHODS: A reciprocal transplant experiment was performed using 15 populations from alluvial deciduous forests, fallow meadows and coniferous upland forests, and a greenhouse experiment was performed in which plants from these habitats were grown under treatments reflecting the main habitat differentiators (shade, soil acidity, competition). KEY RESULTS: Biomass production, specific leaf area, plant height and relative growth rate differed between habitats in the field experiment and between treatments in the greenhouse, but not between seed origins. Overall, there was no indication of local adaptation in either experiment. CONCLUSIONS: Since I. glandulifera is a successful invader in many habitats without showing local adaptation, it is suggested that the species is coping with environmental variation by means of high phenotypic plasticity. The species seems to follow a 'jack-and-master' strategy, i.e. it is able to maintain high fitness under a wide range of environmental conditions, but performs particularly well in favourable habitats. Therefore, the proposed colonization sequence is likely to be based primarily on changes in propagule pressure. It is concluded that invasive alien plants can become dominant in distinct habitats without local adaptation.


Assuntos
Adaptação Biológica , Impatiens/fisiologia , Espécies Introduzidas , Concentração de Íons de Hidrogênio , Luz , Solo
12.
Ambio ; 42(5): 527-40, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23532717

RESUMO

Invasion ecology has much advanced since its early beginnings. Nevertheless, explanation, prediction, and management of biological invasions remain difficult. We argue that progress in invasion research can be accelerated by, first, pointing out difficulties this field is currently facing and, second, looking for measures to overcome them. We see basic and applied research in invasion ecology confronted with difficulties arising from (A) societal issues, e.g., disparate perceptions of invasive species; (B) the peculiarity of the invasion process, e.g., its complexity and context dependency; and (C) the scientific methodology, e.g., imprecise hypotheses. To overcome these difficulties, we propose three key measures: (1) a checklist for definitions to encourage explicit definitions; (2) implementation of a hierarchy of hypotheses (HoH), where general hypotheses branch into specific and precisely testable hypotheses; and (3) platforms for improved communication. These measures may significantly increase conceptual clarity and enhance communication, thus advancing invasion ecology.


Assuntos
Ecologia/métodos , Espécies Introduzidas , Comunicação , Humanos , Percepção , Pesquisa
13.
PLoS One ; 18(2): e0275044, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36735650

RESUMO

Urban grasslands are crucial for biodiversity and ecosystem services in cities, while little is known about their multifunctionality under climate change. Thus, we investigated the effects of simulated climate change, i.e., increased [CO2] and temperature, and reduced precipitation, on individual functions and overall multifunctionality in mesocosm grasslands sown with forbs and grasses in four different proportions aiming at mimicking road verge grassland patches. Climate change scenarios RCP2.6 (control) and RCP8.5 (worst-case) were simulated in walk-in climate chambers of an ecotron facility, and watering was manipulated for normal vs. reduced precipitation. We measured eight indicator variables of ecosystem functions based on below- and aboveground characteristics. The young grassland communities responded to higher [CO2] and warmer conditions with increased vegetation cover, height, flower production, and soil respiration. Lower precipitation affected carbon cycling in the ecosystem by reducing biomass production and soil respiration. In turn, the water regulation capacity of the grasslands depended on precipitation interacting with climate change scenario, given the enhanced water efficiency resulting from increased [CO2] under RCP8.5. Multifunctionality was negatively affected by reduced precipitation, especially under RCP2.6. Trade-offs arose among single functions that performed best in either grass- or forb-dominated grasslands. Grasslands with an even ratio of plant functional types coped better with climate change and thus are good options for increasing the benefits of urban green infrastructure. Overall, the study provides experimental evidence of the effects of climate change on the functionality of urban ecosystems. Designing the composition of urban grasslands based on ecological theory may increase their resilience to global change.


Assuntos
Mudança Climática , Ecossistema , Pradaria , Dióxido de Carbono , Poaceae , Água , Solo/química
14.
Sci Rep ; 13(1): 13530, 2023 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598245

RESUMO

In the northern forelands of the Alps, farmers report an increase of Jacobaea aquatica in production grasslands. Due to its toxicity, the species affects grassland productivity and calls for costly control measures. We are investigating the extent to which management practices or climatic factors are responsible for the increase of the species and how the situation will change due to climate change. We tested for effects of management intensity, fertilization, agri-environmental measures, and soil disturbance, and modeled the occurrence of the species under rcp4.5 and rcp8.5 scenarios. The main determinants of the occurrence of the species are soil type and summer rainfall. A high risk is associated with wet soils and > 400 mm of rain between June and August; an influence of the management-related factors could not be detected. Under the climate-change scenarios, the overall distribution decreases and shifts to the wetter alpine regions. Thus, the current increase is rather a shift in the occurrence of the species due to the altered precipitation situation. Under future climatic conditions, the species will decline and retreat to higher regions in the Alps. This will decrease the risk of forage contamination for production grassland in the lowlands.


Assuntos
Síndrome Linfoproliferativa Autoimune , Plantas Tóxicas , Pradaria , Chuva , Solo
15.
Philos Trans R Soc Lond B Biol Sci ; 378(1892): 20220357, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37899021

RESUMO

Artificial light at night (ALAN) threatens natural ecosystems globally. While ALAN research is increasing, little is known about how ALAN affects plants and interactions with other organisms. We explored the effects of ALAN on plant defence and plant-insect interactions using barley (Hordeum vulgare) and the English grain aphid (Sitobion avenae). Plants were exposed to 'full' or 'part' nights of 15-20 lux ALAN, or no ALAN 'control' nights, to test the effects of ALAN on plant growth and defence. Although plant growth was only minimally affected by ALAN, aphid colony growth and aphid maturation were reduced significantly by ALAN treatments. Importantly, we found strong differences between full-night and part-night ALAN treatments. Contrary to our expectations, part ALAN had stronger negative effects on aphid colony growth than full ALAN. Defence-associated gene expression was affected in some cases by ALAN, but also positively correlated with aphid colony size, suggesting that the effects of ALAN on plant defences are indirect, and regulated via direct disruption of aphid colonies rather than via ALAN-induced upregulation of defences. Mitigating ecological side effects of ALAN is a complex problem, as reducing exposure to ALAN increased its negative impact on insect herbivores. This article is part of the theme issue 'Light pollution in complex ecological systems'.


Assuntos
Afídeos , Animais , Poluição Luminosa , Ecossistema , Plantas , Herbivoria , Luz
16.
Environ Manage ; 50(2): 217-25, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22648658

RESUMO

The scope of re-introduction as a measure for plant species protection is increasing, but as long as no standardized methods are available, species-specific assessments are necessary to determine whether seeds, adult plants or plant fragments should be used. The endangered German False Tamarisk (Myricaria germanica), which occurs on gravel bars along pre-alpine rivers, is difficult to grow from seeds. Thus, propagation of stem cuttings was investigated as an alternative method. Experiments were conducted in a greenhouse and a field site with three treatments: cutting length 5 or 10 cm, vertical burial 5 or 10 cm, and water level low or high. Plants grown in the greenhouse were transplanted to the River Isar to test establishment of rooted cuttings on gravel bars. The cuttings in the greenhouse showed high survival (34-96 %). Survival and biomass production were greatest for 10-cm cuttings buried at 10-cm depth, while only one of the 5-cm cuttings survived at this depth, and no significant effect of variation in water level was observed. None of the cuttings transplanted to field sites survived, most likely because of drought stress and competition. We conclude that for re-introduction of Myricaria germanica rooted cuttings can be easily produced in large quantities, while transplantation to near-natural environments has to be improved to reduce mortality.


Assuntos
Embriófitas/crescimento & desenvolvimento , Espécies em Perigo de Extinção , Biomassa , Secas , Raízes de Plantas/crescimento & desenvolvimento , Rios , Sobrevida
17.
Sci Total Environ ; 812: 151478, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34742951

RESUMO

Roadsides can harbour remarkable biodiversity; thus, they are increasingly considered as habitats with potential for conservation value. To improve construction and management of roadside habitats with positive effects on biodiversity, we require a quantitative understanding of important influential factors that drive both positive and negative effects of roads. We conducted meta-analyses to assess road effects on bird communities. We specifically tested how the relationship between roads and bird richness varies when considering road type, habitat characteristics and feeding guild association. Overall, bird richness was similar in road habitats compared to non-road habitats, however, the two apparently differ in species composition. Bird richness was lowered by road presence in areas with denser tree cover but did not differ according to road type. Richness differences between habitats with and without roads further depended on primary diet of species, and richness of omnivores was positively affected by road presence. We conclude that impacts of roads on bird richness are highly context-dependent, and planners should carefully evaluate road habitats on a case by case basis. This emphasizes the need for further studies that explicitly test for differences in species composition and abundance, to disentangle contexts where a road will negatively affect bird communities, and where it will not.


Assuntos
Aves , Conservação dos Recursos Naturais , Animais , Biodiversidade , Ecossistema , Árvores
18.
PLoS One ; 17(4): e0264881, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35486623

RESUMO

Arthropod predators are important for ecosystem functioning by providing top-down regulation of insect herbivores. As predator communities and activity are influenced by biotic and abiotic factors on different spatial scales, the strength of top-down regulation ('arthropod predation') is also likely to vary. Understanding the combined effects of potential drivers on arthropod predation is urgently needed with regard to anthropogenic climate and land-use change. In a large-scale study, we recorded arthropod predation rates using artificial caterpillars on 113 plots of open herbaceous vegetation embedded in contrasting habitat types (forest, grassland, arable field, settlement) along climate and land-use gradients in Bavaria, Germany. As potential drivers we included habitat characteristics (habitat type, plant species richness, local mean temperature and mean relative humidity during artificial caterpillar exposure), landscape diversity (0.5-3.0-km, six scales), climate (multi-annual mean temperature, 'MAT') and interactive effects of habitat type with other drivers. We observed no substantial differences in arthropod predation rates between the studied habitat types, related to plant species richness and across the Bavarian-wide climatic gradient, but predation was limited when local mean temperatures were low and tended to decrease towards higher relative humidity. Arthropod predation rates increased towards more diverse landscapes at a 2-km scale. Interactive effects of habitat type with local weather conditions, plant species richness, landscape diversity and MAT were not observed. We conclude that landscape diversity favours high arthropod predation rates in open herbaceous vegetation independent of the dominant habitat in the vicinity. This finding may be harnessed to improve top-down control of herbivores, e.g. agricultural pests, but further research is needed for more specific recommendations on landscape management. The absence of MAT effects suggests that high predation rates may occur independent of moderate increases of MAT in the near future.


Assuntos
Artrópodes , Ecossistema , Agricultura , Animais , Plantas , Comportamento Predatório , Temperatura
19.
Sci Adv ; 8(18): eabm9359, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35544641

RESUMO

Changes in climate and land use are major threats to pollinating insects, an essential functional group. Here, we unravel the largely unknown interactive effects of both threats on seven pollinator taxa using a multiscale space-for-time approach across large climate and land-use gradients in a temperate region. Pollinator community composition, regional gamma diversity, and community dissimilarity (beta diversity) of pollinator taxa were shaped by climate-land-use interactions, while local alpha diversity was solely explained by their additive effects. Pollinator diversity increased with reduced land-use intensity (forest < grassland < arable land < urban) and high flowering-plant diversity at different spatial scales, and higher temperatures homogenized pollinator communities across regions. Our study reveals declines in pollinator diversity with land-use intensity at multiple spatial scales and regional community homogenization in warmer and drier climates. Management options at several scales are highlighted to mitigate impacts of climate change on pollinators and their ecosystem services.


Assuntos
Ecossistema , Magnoliopsida , Animais , Biodiversidade , Mudança Climática , Florestas , Insetos
20.
Plants (Basel) ; 10(4)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920882

RESUMO

Grassland biodiversity is declining due to climatic change, land-use intensification, and establishment of invasive plant species. Excluding or suppressing invasive species is a challenge for grassland management. An example is Jacobaea aquatica, an invasive native plant in wet grasslands of Central Europe, that is causing problems to farmers by being poisonous, overabundant, and fast spreading. This study aimed at testing designed grassland communities in a greenhouse experiment, to determine key drivers of initial J. aquatica suppression, thus dismissing the use of pesticides. We used two base communities (mesic and wet grasslands) with three plant traits (plant height, leaf area, seed mass), that were constrained and diversified based on the invader traits. Native biomass, community-weighted mean trait values, and phylogenetic diversity (PD) were used as explanatory variables to understand variation in invasive biomass. The diversified traits leaf area and seed mass, PD, and native biomass significantly affected the invader. High native biomass permanently suppressed the invader, while functional traits needed time to develop effects; PD effects were significant at the beginning of the experiment but disappeared over time. Due to complexity and temporal effects, community weighted mean traits proved to be moderately successful for increasing invasion resistance of designed grassland communities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA