RESUMO
Common marmosets are promising laboratory animals for the study of higher brain functions. Although there are many opportunities to use sedatives and anesthetics in resting brain function measurements in marmosets, their effects on the resting-state network remain unclear. In this study, the effects of sedatives or anesthetics such as midazolam, dexmedetomidine, co-administration of isoflurane and dexmedetomidine, propofol, alfaxalone, isoflurane, and sevoflurane on the resting brain function in common marmosets were evaluated using independent component analysis, dual regression analysis, and graph-theoretic analysis; and the sedatives or anesthetics suitable for the evaluation of resting brain function were investigated. The results show that network preservation tendency under light sedative with midazolam and dexmedetomidine is similar regardless of the type of target receptor. Moreover, alfaxalone, isoflurane, and sevoflurane have similar effects on resting state brain function, but only propofol exhibits different tendencies, as resting brain function is more preserved than it is following the administration of the other anesthetics. Co-administration of isoflurane and dexmedetomidine shows middle effect between sedatives and anesthetics.
Assuntos
Anestésicos , Dexmedetomidina , Isoflurano , Propofol , Animais , Hipnóticos e Sedativos/farmacologia , Callithrix , Isoflurano/farmacologia , Sevoflurano/farmacologia , Midazolam/farmacologia , Dexmedetomidina/farmacologia , Anestésicos/farmacologia , EncéfaloRESUMO
The development of regenerative medicine using cell therapy is eagerly awaited for diseases such as spinal cord injury (SCI), for which there has been no radical cure. We previously reported the direct conversion of human fibroblasts into neuronal-like cells using only chemical compounds; however, it is unclear whether chemical compound-induced neuronal-like (CiN) cells are clinically functional. In this study, we partially modified the method of inducing CiN cells (termed immature CiN cells) and examined their therapeutic efficacy, in a rat model of SCI, to investigate whether immature CiN cells are promising for clinical applications. Motor function recovery, after SCI, was assessed using the Basso, Beattie, and Bresnahan (BBB) test, as well as the CatWalk analysis. We found that locomotor recovery, after SCI in the immature CiN cell-transplanted group, was partially improved compared to that in the control group. Consistent with these results, magnetic resonance imaging (MRI) and histopathological analyses revealed that nerve recovery or preservation improved in the immature CiN cell-transplanted group. Furthermore, transcriptome analysis revealed that immature CiN cells highly express hepatocyte growth factor (HGF), which has recently been shown to be a promising therapeutic agent against SCI. Our findings suggest that immature CiN cells may provide an alternative strategy for the regenerative therapy of SCI.
Assuntos
Fibroblastos , Traumatismos da Medula Espinal , Humanos , Animais , Ratos , Terapia Baseada em Transplante de Células e Tecidos , Perfilação da Expressão Gênica , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/terapiaRESUMO
Preclinical applications of resting-state functional magnetic resonance imaging (rsfMRI) offer the possibility to non-invasively probe whole-brain network dynamics and to investigate the determinants of altered network signatures observed in human studies. Mouse rsfMRI has been increasingly adopted by numerous laboratories worldwide. Here we describe a multi-centre comparison of 17 mouse rsfMRI datasets via a common image processing and analysis pipeline. Despite prominent cross-laboratory differences in equipment and imaging procedures, we report the reproducible identification of several large-scale resting-state networks (RSN), including a mouse default-mode network, in the majority of datasets. A combination of factors was associated with enhanced reproducibility in functional connectivity parameter estimation, including animal handling procedures and equipment performance. RSN spatial specificity was enhanced in datasets acquired at higher field strength, with cryoprobes, in ventilated animals, and under medetomidine-isoflurane combination sedation. Our work describes a set of representative RSNs in the mouse brain and highlights key experimental parameters that can critically guide the design and analysis of future rodent rsfMRI investigations.
Assuntos
Encéfalo/fisiologia , Conectoma/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia , Animais , Encéfalo/diagnóstico por imagem , Conectoma/normas , Feminino , Processamento de Imagem Assistida por Computador/normas , Imageamento por Ressonância Magnética/normas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/diagnóstico por imagem , Reprodutibilidade dos TestesRESUMO
Baseline locomotion and behavioral traits in the common marmoset Parkinson's disease model were examined to provide basic information for preclinical evaluations of medical treatments. A single regimen of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine at a cumulative dose of 5 mg/kg as the free base over three consecutive days was administered subcutaneously to 10 marmosets. Data obtained from these marmosets were compared to pre-1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine levels or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine free marmosets. After the single regimen, reduced daily locomotion, a measure of immobility (a primary sign of Parkinsonism), was observed for more than a year. A moving tremor was also observed by visual inspection during this period. When apomorphine (0.13 mg/kg, s.c.) was administered, either right or left circling behavior was observed in a cylindrical chamber in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine marmosets, suggestive of unequal neural damage between the two brain hemispheres to different extents. MRI revealed that T1 relaxation time in the right substantia nigra correlated with right circling in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine marmosets. Histology was supportive of dopaminergic neural loss in the striatum. These results increase our understanding of the utility and limitations of the Parkinson's disease model in marmosets with a single 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine regimen, and provide reference data for efficacious preclinical evaluations.
Assuntos
Locomoção/fisiologia , Doença de Parkinson/patologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/patologia , Callithrix/fisiologia , Corpo Estriado/patologia , Modelos Animais de Doenças , Dopamina/metabolismo , Locomoção/efeitos dos fármacos , Transtornos Parkinsonianos/patologia , Substância Negra/patologia , Tremor/induzido quimicamenteRESUMO
STUDY DESIGN: Cross-sectional study. OBJECTIVE: Patients who undergo intramedullary spinal surgery occasionally experience post-surgical chronic pain; however, the underlying mechanisms are not yet completely understood. Therefore, this study aimed to identify the cerebral structural changes in patients with post-surgical chronic myelopathic pain using voxel-based morphometry. SETTING: Single university hospital in Tokyo, Japan. METHODS: Forty-nine patients who had undergone intramedullary spinal surgery between January 2002 and April 2014 participated in this study. Participants were classified into two groups based on their post-surgical chronic pain intensity: control (numeric rating scale score of <3) and pain (numeric rating scale score of ≥3) groups. We compared pain questionnaire and brain MRI between two groups. Brain MRI data of each participants was analyzed using voxel-based morphometry. RESULTS: Voxel-based morphometry revealed that the gray matter volume in the left supplementary motor area, left primary motor area, and left posterior cingulate cortex was higher in the pain group than that in the control group. In addition, the numeric rating scale score was significantly correlated with increased gray matter volume in the left primary motor area, left posterior cingulate cortex, and right superior parietal lobule. CONCLUSION: Present study elucidates the characteristic cerebral structural changes after an intramedullary spinal surgery using voxel-based morphometry and indicates that the structural changes in specific cerebral areas are associated with post-surgical chronic myelopathic pain.
Assuntos
Dor Crônica/fisiopatologia , Substância Cinzenta/patologia , Giro do Cíngulo/patologia , Córtex Motor/patologia , Neuroimagem , Procedimentos Neurocirúrgicos/efeitos adversos , Dor Pós-Operatória/fisiopatologia , Doenças da Medula Espinal/cirurgia , Adulto , Idoso , Dor Crônica/etiologia , Feminino , Substância Cinzenta/diagnóstico por imagem , Giro do Cíngulo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Córtex Motor/diagnóstico por imagem , Neuroimagem/métodos , Dor Pós-Operatória/etiologiaRESUMO
Functional magnetic resonance imaging (fMRI) based on the blood oxygenation level-dependent (BOLD) signal has been used to infer sites of neuronal activation in the brain. A recent study demonstrated, however, unexpected BOLD signal generation without neuronal excitation, which led us to hypothesize the presence of another cellular source for BOLD signal generation. Collective assessment of optogenetic activation of astrocytes or neurons, fMRI in awake mice, electrophysiological measurements, and histochemical detection of neuronal activation, coherently suggested astrocytes as another cellular source. Unexpectedly, astrocyte-evoked BOLD signal accompanied oxygen consumption without modulation of neuronal activity. Imaging mass spectrometry of brain sections identified synthesis of acetyl-carnitine via oxidative glucose metabolism at the site of astrocyte-, but not neuron-evoked BOLD signal. Our data provide causal evidence that astrocytic activation alone is able to evoke BOLD signal response, which may lead to reconsideration of current interpretation of BOLD signal as a marker of neuronal activation.
Assuntos
Astrócitos/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imageamento por Ressonância Magnética , Neurônios/fisiologia , Oxigênio/sangue , Animais , Encéfalo/irrigação sanguínea , Glucose/metabolismo , Camundongos Transgênicos , Microeletrodos , Optogenética , Consumo de Oxigênio , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/metabolismo , VigíliaRESUMO
Brain development involves spatiotemporally complex microstructural changes. A number of neuropsychiatric disorders are linked to the neural processes of development and aging. Thus, it is important to understanding the typical developmental patterns of various brain structures, which will help to define critical periods of vulnerability for neural maturation, as well as anatomical mechanisms of brain structure-related neuropathology. In this study, we used magnetic resonance imaging to assess development of the orbitofrontal cortex, cingulate cortex, amygdala, and hippocampus in a non-human primate species, the common marmoset (Callithrix jacchus). We collected a total of 114 T2-weighted and 91 diffusion-weighted scans from 23 animals from infancy to early adulthood. Quantitative and qualitative evaluation of age-related brain growth patterns showed non-linear structural developmental changes in all measured brain regions, consistent with reported human data. Overall, robust volumetric growth was observed from 1 to 3 months of age (from infancy to the early juvenile period). This rapid brain growth was associated with the largest decrease in mean, axial, and radial diffusivities of diffusion tensor imaging in all brain regions, suggesting an increase in the number and size of cells, dendrites, and spines during this period. After this developmental period, the volume of various brain regions steadily increased until adolescence (7-13 months of age, depending on the region). Further, structural connectivity derived from tractography data in various brain regions continuously changed from infancy to adolescence, suggesting that the increase in brain volume was related to continued axonal myelination during adolescence. Thereafter, the volume of the cortical regions decreased considerably, while there was no change in subcortical regions. Familial factors, rather than sex, contributed the development of the front-limbic brain regions. Overall, this study provides further data on the factors and timing important for normal brain development, and suggest that the common marmoset is a useful animal model for human neural development.
Assuntos
Mapeamento Encefálico/métodos , Encéfalo/crescimento & desenvolvimento , Vias Neurais/crescimento & desenvolvimento , Animais , Callithrix , Imagem de Tensor de Difusão/métodos , Feminino , Estudos Longitudinais , Masculino , Neurogênese/fisiologiaRESUMO
PURPOSE: To investigate the use of diffusion-tensor imaging (DTI) to detect denervation of the nigrostriatal pathway in a nonhuman primate model of Parkinson disease (PD) after treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MATERIALS AND METHODS: This study was approved by the institutional committee for animal experiments. DTI was performed in marmosets (n = 6) by using a 7-T magnetic resonance (MR) imager before and 10 weeks after administration of MPTP. Fixed brains of a normal marmoset and a marmoset model of PD (n = 1) were analyzed by using microscopic tractography. Tyrosine-hydroxylase staining of dopaminergic neurons and three-dimensional histologic analysis also were performed in normal marmosets (n = 2) and a PD marmoset model (n = 2) to validate the course of the nigrostriatal pathway revealed at tractography. Statistical analysis of voxel-based and post hoc region-of-interest analyses of DTI maps was performed by using a paired t test. RESULTS: At voxel-based analysis of DTI before and after treatment, MPTP-treated marmoset brains showed significantly increased axial and radial diffusivity in the bilateral nigrostriatal pathway (P < .05, false discovery rate corrected). The largest area of significantly increased diffusivity was an area of axial diffusivity in the right hemispere (177 mm(3)) that corresponded to the location of dopaminergic neurodegeneration at histologic evaluation. Region-of-interest analysis revealed a 27% increase in axial diffusivity in the right hemisphere (1.198 mm(2)/sec ± 0.111 to 1.522 mm(2)/sec ± 0.118; P = .002). Three-dimensional histologic analysis with tyrosine-hydroxylase staining showed the course of the nigrostriatal pathway and degeneration in the PD marmoset model as the absence of a tyrosine-hydroxylase stained region. Microscopic tractography showed that the connection of the substantia nigra to the striatum followed the same course as the nigrostriatal pathway and fewer fiber tracts in the PD marmoset model. CONCLUSION: DTI and microscopic tractography showed the loss of fiber structures of the nigrostriatal pathway in the marmoset model of PD. The results of this study provide a potential basis for the use of DTI in the clinical diagnosis of PD.
Assuntos
Corpo Estriado/patologia , Imagem de Difusão por Ressonância Magnética , Vias Neurais/patologia , Doença de Parkinson/diagnóstico , Substância Negra/patologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/administração & dosagem , Animais , Callithrix , Modelos Animais de Doenças , MasculinoRESUMO
BACKGROUND: Cervical compressive myelopathy (CCM) is caused by chronic spinal cord compression due to spondylosis, a degenerative disc disease, and ossification of the ligaments. Tip-toe walking Yoshimura (twy) mice are reported to be an ideal animal model for CCM-related neuronal dysfunction, because they develop spontaneous spinal cord compression without any artificial manipulation. Previous histological studies showed that neurons are lost due to apoptosis in CCM, but the mechanism underlying this neurodegeneration was not fully elucidated. The purpose of this study was to investigate the pathophysiology of CCM by evaluating the global gene expression of the compressed spinal cord and comparing the transcriptome analysis with the physical and histological findings in twy mice. METHODS: Twenty-week-old twy mice were divided into two groups according to the magnetic resonance imaging (MRI) findings: a severe compression (S) group and a mild compression (M) group. The transcriptome was analyzed by microarray and RT-PCR. The cellular pathophysiology was examined by immunohistological analysis and immuno-electron microscopy. Motor function was assessed by Rotarod treadmill latency and stride-length tests. RESULTS: Severe cervical calcification caused spinal canal stenosis and low functional capacity in twy mice. The microarray analysis revealed 215 genes that showed significantly different expression levels between the S and the M groups. Pathway analysis revealed that genes expressed at higher levels in the S group were enriched for terms related to the regulation of inflammation in the compressed spinal cord. M1 macrophage-dominant inflammation was present in the S group, and cysteine-rich protein 61 (Cyr61), an inducer of M1 macrophages, was markedly upregulated in these spinal cords. Furthermore, C1q, which initiates the classical complement cascade, was more upregulated in the S group than in the M group. The confocal and electron microscopy observations indicated that classically activated microglia/macrophages had migrated to the compressed spinal cord and eliminated synaptic terminals. CONCLUSIONS: We revealed the detailed pathophysiology of the inflammatory response in an animal model of chronic spinal cord compression. Our findings suggest that complement-mediated synapse elimination is a central mechanism underlying the neurodegeneration in CCM.
Assuntos
Regulação da Expressão Gênica/fisiologia , Inflamação/genética , Inflamação/fisiopatologia , Compressão da Medula Espinal , Medula Espinal/patologia , Sinapses/patologia , Animais , Complemento C1q/genética , Complemento C1q/metabolismo , Proteína Rica em Cisteína 61/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Macrófagos/metabolismo , Macrófagos/patologia , Macrófagos/ultraestrutura , Imageamento por Ressonância Magnética , Camundongos , Camundongos Mutantes , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/fisiopatologia , Mutação/genética , Pirofosfatases/genética , Pirofosfatases/metabolismo , Índice de Gravidade de Doença , Transdução de Sinais/imunologia , Medula Espinal/metabolismo , Medula Espinal/ultraestrutura , Compressão da Medula Espinal/imunologia , Compressão da Medula Espinal/patologia , Compressão da Medula Espinal/fisiopatologia , Sinapses/metabolismo , Sinapses/ultraestrutura , Fatores de TempoRESUMO
Neonatal hypoxic ischemia (HI) occurs owing to reduced cerebral oxygen levels and perfusion during the perinatal period. Brain injury after HI triggers neurological manifestations such as motor impairment, and the improvement of impaired brain function remains challenging. Recent studies suggest that cortical myelination plays a role in motor learning, but its involvement in motor improvement after HI injury is not well understood. This study aimed to investigate the impact of myelination on motor improvement following neonatal HI injury. We employed a modified Rice-Vannucci model; the right common carotid artery of postnatal day 7 (P7) Wistar rats was isolated and divided, and the rats were then exposed to hypoxic condition (90 min, 8 % O2). A total of 101 rats (66 males) were divided into four groups: trained-HI (n = 38), trained-Sham (n = 16), untrained-HI (n = 31), and untrained-Sham (n = 16). The trained groups underwent rotarod-based exercise training from P22 to P41 (3 days per week). Structural analysis using magnetic resonance imaging and immunohistochemistry (n = 6 per group) revealed increased fractional anisotropy and myelin density in the primary somatosensory cortex of the trained-HI group. We further evaluated the effect of myelination promotion on rotarod performance by administering clemastine, a myelination-promoting drug, via daily intraperitoneal injections. Clemastine did not enhance motor improvement in untrained-HI rats. However, clemastine-administered trained-HI rats (n = 7) exhibited significantly improved motor performance compared to both saline-administered trained-HI rats (n = 11) and clemastine-administered untrained-HI rats (n = 7). These findings suggest that myelination may be a key mechanism in motor improvement after HI injury and that combining exercise training with clemastine administration could be an effective therapeutic strategy for motor improvement following HI injury.
RESUMO
Background/Objectives: Abnormalities in cerebrospinal fluid (CSF) dynamics cause diverse conditions, such as hydrocephalus, but the underlying mechanism is still unknown. Methods to study CSF dynamics in small animals have not been established due to the lack of an evaluation system. Therefore, the purpose of this research study is to establish the time-spatial labeling inversion pulse (Time-SLIP) MRI technique for the evaluation of CSF dynamics in mice. Methods: We performed the Time-SLIP technique on 10 wild-type mice and 20 Tiptoe-walking Yoshimura (TWY) mice, a mouse model of ossification of the posterior longitudinal ligament (OPLL). We defined the stir distance as the distance of CSF stirring and calculated the mean ± standard deviation. The intraclass correlation coefficient of intraobserver reliability was also calculated. Furthermore, in TWY mice, the correlation coefficient between stir distance and canal stenosis ratio (CSR) was calculated. Results: The stir distance was significantly lower in TWY mice at 12 weeks and 17 weeks of age (1.20 ± 0.16, 1.21 ± 0.06, and 1.21 ± 0.15 mm at 12 weeks and 1.32 ± 0.21, 1.28 ± 0.23, and 1.38 ± 0.31 mm at 17 weeks for examiners A, B, and C). The intrarater reliability of the three examiners was excellent (>0.90) and there was a strongly negative correlation between stir distance and CSR in TWY mice (>-0.80). Conclusions: In this study, we established the Time-SLIP technique in experimental mice. This technique allows for a better understanding of CSF dynamics in small laboratory animals.
RESUMO
Here, we report the identification of causative genes for limb-shortening in individuals repeatedly found in a population of severely immunodeficient NOG mice maintained via sibling mating. First, we conducted a pedigree survey to determine whether limb-shortening was a recessive genetic trait and then identified it using a crossing test. Simultaneously, the symptoms were identified in detail using pathological analysis. Accordingly, a mouse strain exhibiting a recessive trait caused by a single gene trait and similar symptoms was identified, suggesting growth differentiation factor 5 (Gdf5) as a causative gene. Genome walking via PCR and sequence analysis of Gdf5 revealed a deletion of approximately 1.1 kb from the latter half of exon 2 of Gdf5. Furthermore, we established NOG-Gdf5bpJic by removing other modified genes and confirmed that the inheritance pattern was reconfirmed semi-dominant. In recent years, regenerative medicine research using immunodeficient mice has been actively conducted, and this murine strain is expected to contribute to niche stem cell analysis and transplantation research.
RESUMO
Adolescent idiopathic scoliosis (AIS) affects approximately 3% of the global population. Recent studies have drawn attention to abnormalities in the dynamics of the CSF as potential contributors. This research aims to employ the Time-Spatial Labeling Inversion Pulse (Time-SLIP) MRI to assess and analyze cerebrospinal fluid (CSF) dynamics in AIS patients. 101 AIS patients underwent Time-SLIP MRI. Images were taken at the mid-cervical and craniocervical junction regions. The sum of the maximum movement distances of CSF on the ventral and dorsal sides of the spinal canal within a single timeframe was defined and measured as Travel Distance (TD). Correlations between TD, age, Cobb angle, and Risser grade were analyzed. TD comparisons were made across Lenke classifications. TD for all patients was a weak correlation with the Cobb angle (r = - 0.16). Comparing TD between Lenke type 1 and 5, type 5 patients display significantly shorter TD (p < 0.05). In Risser5 patients with Lenke type 5 showed a significant negative correlation between Cobb angle and TD (r = - 0.44). Lenke type 5 patients had significantly shorter CSF TD compared to type1, correlating with worsening Cobb angles. Further analysis and exploration are required to understand the mechanism of onset and progression.
Assuntos
Líquido Cefalorraquidiano , Imageamento por Ressonância Magnética , Escoliose , Humanos , Escoliose/diagnóstico por imagem , Adolescente , Imageamento por Ressonância Magnética/métodos , Feminino , Masculino , CriançaRESUMO
ABSTRACT: Magnetic resonance imaging (MRI) is a crucial imaging technique for visualizing water in living organisms. Besides proton MRI, which is widely available and enables direct visualization of intrinsic water distribution and dynamics in various environments, MR-WTI (MR water tracer imaging) using 17 O-labeled water has been developed, benefiting from the many advancements in MRI software and hardware that have substantially improved the signal-to-noise ratio and made possible faster imaging. This cutting-edge technique allows the generation of novel and valuable images for clinical use. This review elucidates the studies related to MRI water tracer techniques centered around 17 O-labeled water, explaining the fundamental principles of imaging and providing clinical application examples. Anticipating continued progress in studies involving isotope-labeled water, this review is expected to contribute to elucidating the pathophysiology of various diseases related to water dynamics abnormalities and establishing novel imaging diagnostic methods for associated diseases.
Assuntos
Imageamento por Ressonância Magnética , Software , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodosRESUMO
Animal models of brain function are critical for the study of human diseases and development of effective interventions. Resting-state network (RSN) analysis is a powerful tool for evaluating brain function and performing comparisons across animal species. Several studies have reported RSNs in the common marmoset (Callithrix jacchus; marmoset), a non-human primate. However, it is necessary to identify RSNs and evaluate commonality and inter-individual variance through analyses using a larger amount of data. In this study, we present marmoset RSNs detected using > 100,000 time-course image volumes of resting-state functional magnetic resonance imaging data with careful preprocessing. In addition, we extracted brain regions involved in the composition of these RSNs to understand the differences between humans and marmosets. We detected 16 RSNs in major marmosets, three of which were novel networks that have not been previously reported in marmosets. Since these RSNs possess the potential for use in the functional evaluation of neurodegenerative diseases, the data in this study will significantly contribute to the understanding of the functional effects of neurodegenerative diseases.
Assuntos
Callithrix , Doenças Neurodegenerativas , Animais , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodosRESUMO
Background: Spinal cord injury (SCI) causes severe sequelae and significant social loss, depending on the extent of the damage. Most previous studies have focused on the pathology of the spinal cord to develop treatments for SCI. However, it is now known that the brain, which is not directly damaged, also undergoes morphological changes after spinal cord injury, which could affect natural recovery and treatment. In recent years, magnetic resonance imaging (MRI) has been developed to analyze functional changes in the brain. Resting-state functional MRI (rsfMRI), which captures brain activity at rest, can calculate functional connections between brain areas and identify central hubs by network analysis. Purpose: We aim to investigate functional connectivity in the brain using rsfMRI after SCI and to determine how brain-network main hubs change over time. Methods: We evaluated rsfMRI in 10 mice of the contusional SCI model and calculated connectivity using graph theory. We evaluated "centrality," a representative parameter of network analysis. The subtype of centrality was degree centrality, which indicates the hub function of a single area. The five times of rsfMRI were performed in each individual mouse: before injury and at 1, 3, 7, and 14 weeks post-injury. Results: Before the injury, the degree centralities of the primary and secondary motor cortex were high, suggesting that these motor cortices served as main hubs for motor function. After SCI, the hub function of the motor cortices decreased by 14 weeks. In contrast, hub function in the external capsule and the putamen comparatively increased with time after injury, suggesting that the extrapyramidal/subcortical system, which runs the ventral side of the spinal cord and remains after injury in this model, becomes dominant. Conclusion: We demonstrated the shift of the brain network hub after SCI. The results of this study provide basic information for understanding brain network changes after SCI and would be useful for treatment selection and evaluation of its efficacy in SCI patients.
RESUMO
Conventional magnetic resonance imaging (MRI) can detect hemorrhage, edema, syrinx, and spinal cord atrophy, but not axonal disruption after spinal cord injury (SCI). We previously demonstrated that diffusion tensor tractography (DTT) could depict axonal disruption after hemisection SCI in common marmosets. In the present study, to determine the relationship between DTT results and functional recovery after contusive SCI, we performed longitudinal DTT, behavioral, and histological analyses before and after contusive SCI in common marmosets. By comparing the tract fiber estimate depicted by DTT with neuronal fibers labeled with RT97 and SMI-31, anti-neurofilament antibodies, we determined the optimal fractional anisotropy (FA) threshold for fiber tracking to be 0.40. The ratio of the number of tract fiber estimates at the lesion site to the number before SCI, determined by DTT, was significantly correlated with the functional recovery after SCI. Moreover, comparison of the longitudinal pre- and post-SCI FA and axial diffusivity (λ(â)) values revealed that they decreased after injury at the sites caudal to the lesion epicenter in the corticospinal tract and rostral to the lesion epicenter in the dorsal column. The FA values, then, showed partial recovery in the dorsal column. FA-value-oriented color DTT was used to represent axonal sparing or regeneration of the different tracts. These findings indicated that DTT analysis might be a versatile non-invasive tool for evaluating the axonal disruption after SCI.
Assuntos
Callithrix/fisiologia , Traumatismos da Medula Espinal/patologia , Animais , Anisotropia , Comportamento Animal , Imagem de Tensor de Difusão , Feminino , Força da Mão/fisiologia , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Estudos Longitudinais , Atividade Motora/fisiologia , Proteínas de Neurofilamentos/metabolismo , Desempenho Psicomotor/fisiologia , Traumatismos da Medula Espinal/psicologia , Fixação de TecidosRESUMO
Caffeine is a psychoactive substance that not only improves wakefulness, but also slows the cognitive decline caused by aging. However, at present, there are no reports about the effects of caffeine withdrawal, including headaches and changes in brain functional networks (nerve activity). Headache may occur approximately 24 h after discontinuing caffeine intake in chronic caffeine drinkers. The current study aimed to examine the brain functional activity via resting-state functional magnetic resonance imaging in chronically caffeinated and decaffeinated groups to investigate changes in brain activity caused by caffeine. C57BL/6J mice were included in the analysis, and they underwent 9.4-T ultrahigh-field magnetic resonance imaging. The mice were classified into the control, chronic caffeinated, and caffeine withdrawal grsoups. Mice were divided into three groups: 1) not exposed to caffeine (control); 2) treated with caffeine at a concentration of 0.3 mg/mL for 4 weeks (chronic caffeinated); and 3) treated as before with caffeine and withdrawn from caffeine for 24 h. After the three groups were examined, functional connectivity matrices were calculated using brain imaging analysis tools, and independent component analysis was performed. The results showed that caffeine administration activated neural activity areas in the stress response system. Furthermore, 24h after caffeine withdrawal, the results showed an increase in pain-related neural activity. In addition, caffeine administration was shown to activate the dentate gyrus, one of the hippocampal regions, and to decrease the neural activity in the olfactory bulb and anterior cingulate cortex. In the current research, the neural activity of specific brain regions changed after chronic caffeine administration and withdrawal.
RESUMO
Rett syndrome (RTT) is a severe progressive neurodevelopmental disorder characterized by various neurological symptoms. Almost all RTT cases are caused by mutations in the X-linked methyl-CpG-binding protein 2 (MeCP2) gene, and several mouse models have been established to understand the disease. However, the neuroanatomical abnormalities in each brain region of RTT mouse models have not been fully understood. Here, we investigated the global and local neuroanatomy of the Mecp2 gene-deleted RTT model (Mecp2-KO) mouse brain using T2-weighted 3D magnetic resonance imaging with different morphometry to clarify the brain structural abnormalities that are involved in the pathophysiology of RTT. We found a significant reduction in global and almost all local volumes in the brain of Mecp2-KO mice. In addition, a detailed comparative analysis identified specific volume reductions in several brain regions in the Mecp2-deficient brain. Our analysis also revealed that the Mecp2-deficient brain shows changes in hemispheric asymmetry in several brain regions. These findings suggest that MeCP2 affects not only the whole-brain volume but also the region-specific brain structure. Our study provides a framework for neuroanatomical studies of a mouse model of RTT.
RESUMO
Alzheimer's disease (AD) is the leading cause of dementia which afflicts tens of millions of people worldwide. Despite many scientific progresses to dissect the AD's molecular basis from studies on various mouse models, it has been suffered from evolutionary species differences. Here, we report generation of a non-human primate (NHP), common marmoset model ubiquitously expressing Amyloid-beta precursor protein (APP) transgenes with the Swedish (KM670/671NL) and Indiana (V717F) mutations. The transgene integration of generated two transgenic marmosets (TG1&TG2) was thoroughly investigated by genomic PCR, whole-genome sequencing, and fluorescence in situ hybridization. By reprogramming, we confirmed the validity of transgene expression in induced neurons in vitro. Moreover, we discovered structural changes in specific brain regions of transgenic marmosets by magnetic resonance imaging analysis, including in the entorhinal cortex and hippocampus. In immunohistochemistry, we detected increased Aß plaque-like structures in TG1 brain at 7 years old, although evident neuronal loss or glial inflammation was not observed. Thus, this study summarizes our attempt to establish an NHP AD model. Although the transgenesis approach alone seemed not sufficient to fully recapitulate AD in NHPs, it may be beneficial for drug development and further disease modeling by combination with other genetically engineered models and disease-inducing approaches.