Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(5): 051901, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36800452

RESUMO

Jets of hadrons produced at high-energy colliders provide experimental access to the dynamics of asymptotically free quarks and gluons and their confinement into hadrons. In this Letter, we show that the high energies of the Large Hadron Collider (LHC), together with the exceptional resolution of its detectors, allow multipoint correlation functions of energy flow operators to be directly measured within jets for the first time. Using Open Data from the CMS experiment, we show that reformulating jet substructure in terms of these correlators provides new ways of probing the dynamics of QCD jets, which enables direct imaging of the confining transition to free hadrons as well as precision measurements of the scaling properties and interactions of quarks and gluons. This opens a new era in our understanding of jet substructure and illustrates the immense unexploited potential of high-quality LHC data sets for elucidating the dynamics of QCD.

2.
Rep Prog Phys ; 84(12)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34736231

RESUMO

A new paradigm for data-driven, model-agnostic new physics searches at colliders is emerging, and aims to leverage recent breakthroughs in anomaly detection and machine learning. In order to develop and benchmark new anomaly detection methods within this framework, it is essential to have standard datasets. To this end, we have created the LHC Olympics 2020, a community challenge accompanied by a set of simulated collider events. Participants in these Olympics have developed their methods using an R&D dataset and then tested them on black boxes: datasets with an unknown anomaly (or not). Methods made use of modern machine learning tools and were based on unsupervised learning (autoencoders, generative adversarial networks, normalizing flows), weakly supervised learning, and semi-supervised learning. This paper will review the LHC Olympics 2020 challenge, including an overview of the competition, a description of methods deployed in the competition, lessons learned from the experience, and implications for data analyses with future datasets as well as future colliders.


Assuntos
Aprendizado de Máquina , Aprendizado de Máquina Supervisionado , Humanos , Fenômenos Físicos , Física
3.
Phys Rev Lett ; 124(18): 182001, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32441957

RESUMO

Collider data must be corrected for detector effects ("unfolded") to be compared with many theoretical calculations and measurements from other experiments. Unfolding is traditionally done for individual, binned observables without including all information relevant for characterizing the detector response. We introduce OmniFold, an unfolding method that iteratively reweights a simulated dataset, using machine learning to capitalize on all available information. Our approach is unbinned, works for arbitrarily high-dimensional data, and naturally incorporates information from the full phase space. We illustrate this technique on a realistic jet substructure example from the Large Hadron Collider and compare it to standard binned unfolding methods. This new paradigm enables the simultaneous measurement of all observables, including those not yet invented at the time of the analysis.

4.
Phys Rev Lett ; 123(4): 041801, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31491282

RESUMO

When are two collider events similar? Despite the simplicity and generality of this question, there is no established notion of the distance between two events. To address this question, we develop a metric for the space of collider events based on the earth mover's distance: the "work" required to rearrange the radiation pattern of one event into another. We expose interesting connections between this metric and the structure of infrared- and collinear-safe observables, providing a novel technique to quantify event modifications due to hadronization, pileup, and detector effects. We showcase how this metrization unlocks powerful new tools for analyzing and visualizing collider data without relying upon a choice of observables. More broadly, this framework paves the way for data-driven collider phenomenology without specialized observables or machine learning models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA