Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(4): 1160-1167, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38237067

RESUMO

An unexplored material of copper boride has been realized recently in two-dimensional form at a (111) surface of the fcc copper crystal. Here, one-dimensional (1-D) boron growth was observed on the Cu(110) surface, as probed by atomically resolved scanning probe microscopy. The 1-D copper boride was composed of quasi-periodic atomic chains periodically aligned parallel to each other, as confirmed by Fourier transform analysis. The 1-D growth unexpectedly proceeded across surface steps in a self-assembled manner and extended over several 100 nm. The long-range formation of a 1-D quasi-periodic structure on a surface has been theoretically modeled as a 1-D quasi-crystal and the predicted conditions matched the structural parameters obtained by the experimental work here. The quasi-periodic 1-D copper boride system enabled a way to examine 1-D quasi-crystallinity on an actual material.

2.
Phys Rev Lett ; 132(13): 136402, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38613311

RESUMO

We investigate the electronic structure of 2H-NbS_{2} and h-BN by angle-resolved photoemission spectroscopy (ARPES) and photoemission intensity calculations. Although in bulk form, these materials are expected to exhibit band degeneracy in the k_{z}=π/c plane due to screw rotation and time-reversal symmetries, we observe gapped band dispersion near the surface. We extract from first-principles calculations the near-surface electronic structure probed by ARPES and find that the calculated photoemission spectra from the near-surface region reproduce the gapped ARPES spectra. Our results show that the near-surface electronic structure can be qualitatively different from the bulk electronic structure due to partially broken nonsymmorphic symmetries.

3.
Nano Lett ; 23(16): 7675-7682, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37578323

RESUMO

The interplay of spin-orbit coupling and crystal symmetry can generate spin-polarized bands in materials only a few atomic layers thick, potentially leading to unprecedented physical properties. In the case of bilayer materials with global inversion symmetry, locally broken inversion symmetry can generate degenerate spin-polarized bands, in which the spins in each layer are oppositely polarized. Here, we demonstrate that the hidden spins in a Tl bilayer crystal are revealed by growing it on Ag(111) of sizable lattice mismatch, together with the appearance of a remarkable phenomenon unique to centrosymmetric hidden-spin bilayer crystals: a novel band splitting in both spin and space. The key to success in observing this novel splitting is that the interaction at the interface has just the right strength: it does not destroy the original wave functions of the Tl bilayer but is strong enough to induce an energy separation.

4.
Molecules ; 28(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37049748

RESUMO

We present an enhanced method for synthesizing sheets of borophane. Despite the challenges associated with low efficiency, we discovered that incorporating hydrochloric acid into the ion-exchange reaction significantly improved the production yield from 20% to over 50%. After a thorough examination of the reaction, we gained insight into the underlying mechanisms and found that the use of hydrochloric acid provides two key benefits: accelerated production of borophene and isolation of high-purity products. This method has the potential to pave the way for the production of novel topological 2D materials with potential industrial applications.

5.
Nano Lett ; 21(6): 2406-2411, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33686864

RESUMO

Mapping of the local lattice distortion is required to understand the details of the chemical and physical properties of thin films. However, the resolution by the direct microscopic methods was insufficient to detect the local distortion. Here, we have demonstrated that the local distortion of a monatomic film on a substrate is estimated with high resolution using the moiré pattern of the topographic scanning tunneling microscopy image. The analysis focused on the apparently low centers of the moiré pattern of the hexagonal iron nitride monolayer on the Cu(111) substrate. The local distortion was visualized by estimating the displacement of the experimentally detected center position from the ideal position that is extracted from the adjacent center positions. The map of the local distortion revealed that the subsurface impurities are preferentially located on the largely distorted areas. This approach is widely applicable to other thin films on the substrates.

6.
Nano Lett ; 21(10): 4415-4422, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33978424

RESUMO

Spatially controlling the Fermi level of topological insulators and keeping their electronic states stable are indispensable processes to put this material into practical use for semiconductor spintronics devices. So far, however, such a method has not been established yet. Here we show a novel method for doping a hole into n-type topological insulators Bi2X3 (X= Se, Te) that overcomes the shortcomings of the previous reported methods. The key of this doping is to adsorb H2O on Bi2X3 decorated with a small amount of carbon, and its trigger is the irradiation of a photon with sufficient energy to excite the core electrons of the outermost layer atoms. This method allows controlling the doping amount by the irradiation time and acts as photolithography. Such a tunable doping makes it possible to design the electronic states at the nanometer scale and, thus, paves a promising avenue toward the realization of novel spintronics devices based on topological insulators.

7.
Phys Rev Lett ; 125(17): 176401, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33156655

RESUMO

The electrons in 2D systems with broken inversion symmetry are spin-polarized due to spin-orbit coupling and provide perfect targets for observing exotic spin-related fundamental phenomena. We observe a Fermi surface with a novel spin texture in the 2D metallic system formed by indium double layers on Si(111) and find that the primary origin of the spin-polarized electronic states of this system is the orbital angular momentum and not the so-called Rashba effect. The present results deepen the understanding of the physics arising from spin-orbit coupling in atomic-layered materials with consequences for spintronic devices and the physics of the superconducting state.

8.
Phys Rev Lett ; 122(12): 126403, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30978076

RESUMO

The symmetry of a surface or interface plays an important role in determining the spin splitting and texture of a two-dimensional band. Spin-polarized bands of a triangular lattice atomic layer (TLAL) consisting of Sn on a SiC(0001) substrate is investigated by spin- and angle-resolved photoelectron spectroscopy. Surprisingly, both Zeeman- and Rashba-type spin-split bands, without and with spin degeneracy, respectively, coexist at a K point of the Sn TLAL. The K point has a threefold symmetry without inversion symmetry according to the crystal structure including the SiC periodicity, meaning that the Zeeman-type is consistent with the symmetry of the lattice while the Rashba-type is inconsistent. Our density functional calculations reveal that the charge density distribution of the Rashba-type (Zeeman-type) band shows (no) inversion symmetry at the K point. Therefore, the symmetry of the charge density distribution agrees with both types of the spin splitting.

9.
Nano Lett ; 17(6): 3527-3532, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28520435

RESUMO

Local electron-phonon coupling of a one-dimensionally nanorippled graphene is studied on a SiC(0001) vicinal substrate. We have characterized local atomic and electronic structures of a periodically nanorippled graphene (3.4 nm period) prepared on a macrofacet of the 6H-SiC crystal using scanning tunneling microscopy/spectroscopy (STM/STS) and angle-resolved photoelectron spectroscopy (ARPES). The rippled graphene on the macrofacets distributes homogeneously over the 6H-SiC substrate in a millimeter scale, and thus replica bands are detected by the macroscopic ARPES. The STM/STS results indicate the strength of electron-phonon coupling to the out-of-plane phonon at the K̅ points of graphene is periodically modified in accordance with the ripple structure. We propose an interface carbon nanostructure with graphene nanoribbons between the surface rippled graphene and the substrate SiC that periodically modifies the electron-phonon coupling in the surface graphene.

10.
Phys Rev Lett ; 118(9): 096401, 2017 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-28306312

RESUMO

Honeycomb structures of group IV elements can host massless Dirac fermions with nontrivial Berry phases. Their potential for electronic applications has attracted great interest and spurred a broad search for new Dirac materials especially in monolayer structures. We present a detailed investigation of the ß_{12} sheet, which is a borophene structure that can form spontaneously on a Ag(111) surface. Our tight-binding analysis revealed that the lattice of the ß_{12} sheet could be decomposed into two triangular sublattices in a way similar to that for a honeycomb lattice, thereby hosting Dirac cones. Furthermore, each Dirac cone could be split by introducing periodic perturbations representing overlayer-substrate interactions. These unusual electronic structures were confirmed by angle-resolved photoemission spectroscopy and validated by first-principles calculations. Our results suggest monolayer boron as a new platform for realizing novel high-speed low-dissipation devices.

11.
Small ; 12(29): 3956-66, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27295020

RESUMO

The effects of Pb intercalation on the structural and electronic properties of epitaxial single-layer graphene grown on SiC(0001) substrate are investigated using scanning tunneling microscopy (STM), noncontact atomic force microscopy, Kelvin probe force microscopy (KPFM), X-ray photoelectron spectroscopy, and angle-resolved photoemission spectroscopy (ARPES) methods. The STM results show the formation of an ordered moiré superstructure pattern induced by Pb atom intercalation underneath the graphene layer. ARPES measurements reveal the presence of two additional linearly dispersing π-bands, providing evidence for the decoupling of the buffer layer from the underlying SiC substrate. Upon Pb intercalation, the Si 2p core level spectra show a signature for the existence of PbSi chemical bonds at the interface region, as manifested in a shift of 1.2 eV of the bulk SiC component toward lower binding energies. The Pb intercalation gives rise to hole-doping of graphene and results in a shift of the Dirac point energy by about 0.1 eV above the Fermi level, as revealed by the ARPES measurements. The KPFM experiments have shown that decoupling of the graphene layer by Pb intercalation is accompanied by a work function increase. The observed increase in the work function is attributed to the suppression of the electron transfer from the SiC substrate to the graphene layer. The Pb intercalated structure is found to be stable in ambient conditions and at high temperatures up to 1250 °C. These results demonstrate that the construction of a graphene-capped Pb/SiC system offers a possibility of tuning the graphene electronic properties and exploring intriguing physical properties such as superconductivity and spintronics.

12.
Phys Rev Lett ; 116(9): 096801, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26991191

RESUMO

A Weyl semimetal is a new state of matter that hosts Weyl fermions as quasiparticle excitations. The Weyl fermions at zero energy correspond to points of bulk-band degeneracy, called Weyl nodes, which are separated in momentum space and are connected only through the crystal's boundary by an exotic Fermi arc surface state. We experimentally measure the spin polarization of the Fermi arcs in the first experimentally discovered Weyl semimetal TaAs. Our spin data, for the first time, reveal that the Fermi arcs' spin-polarization magnitude is as large as 80% and lies completely in the plane of the surface. Moreover, we demonstrate that the chirality of the Weyl nodes in TaAs cannot be inferred by the spin texture of the Fermi arcs. The observed nondegenerate property of the Fermi arcs is important for establishing its exact topological nature, which reveals that spins on the arc form a novel type of 2D matter. Additionally, the nearly full spin polarization we observed (∼80%) may be useful in spintronic applications.

13.
Phys Rev Lett ; 112(13): 136802, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24745448

RESUMO

Electron scattering in the topological surface state (TSS) of the topological insulator Bi1.5Sb0.5Te1.7Se1.3 was studied using quasiparticle interference observed by scanning tunneling microscopy. It was found that not only the 180° backscattering but also a wide range of backscattering angles of 100°-180° are effectively prohibited in the TSS. This conclusion was obtained by comparing the observed scattering vectors with the diameters of the constant-energy contours of the TSS, which were measured for both occupied and unoccupied states using time- and angle-resolved photoemission spectroscopy. The robust protection from backscattering in the TSS is good news for applications, but it poses a challenge to the theoretical understanding of the transport in the TSS.

14.
Microscopy (Oxf) ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661285

RESUMO

We report that the spin vector of photoelectrons emitted from an atomic layer Pb grown on a germanium substrate [Pb/Ge(111)] can be controlled using an electric field of light. The spin polarization of photoelectrons excited by a linearly polarized light is precisely investigated by spin- and angle-resolved photoemission spectroscopy. The spin polarization of the photoelectrons observed in the mirror plane reverses between p- and s-polarized lights. Considering the dipole transition selection rule, the surface state of Pb/Ge(111) is represented by a linear combination of symmetric and asymmetric orbital components coupled with spins in mutually opposite directions. The spin direction of the photoelectrons is different from that of the initial state when the electric field vector of linearly polarized light deviates from p- or s-polarization conditions. The quantum interference in the photoexcitation process can determine the direction of the spin vector of photoelectrons.

15.
J Phys Condens Matter ; 35(45)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37536324

RESUMO

Formation and electronic states of graphene nanoribbons with arm-chair edges (AGNR) are studied on the SiC(0001) vicinal surfaces toward the [11-00] direction. The surface step and terrace structures of both 4H and 6H-SiC substrates are used as the growth templates of one-dimensional arrays of AGNRs, which are prepared using the carbon molecular beam epitaxy followed by hydrogen intercalation. A band gap is observed above theπ-band maximum by angle-resolved photoelectron spectroscopy (ARPES) for the both samples. The average widths of the AGNRs are 6 and 10 nm, and the estimated average band gaps are 0.40 and 0.28 eV for the 4H- and 6H- substrates, respectively. A simple and phenomenological inverse relation between the energy gap and AGNR width works in the analyses of the ARPES data.

16.
ACS Nano ; 16(3): 3582-3592, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35209713

RESUMO

Ca-intercalation has enabled superconductivity in graphene on SiC. However, the atomic and electronic structures that are critical for superconductivity are still under discussion. We find an essential role of the interface between monolayer graphene and the SiC substrate for superconductivity. In the Ca-intercalation process, at the interface a carbon layer terminating SiC changes to graphene by Ca-termination of SiC (monolayer graphene becomes a bilayer), inducing more electrons than a free-standing model. Then, Ca is intercalated in between the graphene layers, which shows superconductivity with the updated critical temperature (TC) of up to 5.7 K. In addition, the relation between TC and the normal-state conductivity is unusual, "dome-shaped". These findings are beyond the simple C6CaC6 model in which s-wave BCS superconductivity is theoretically predicted. This work proposes a general picture of the intercalation-induced superconductivity in graphene on SiC and indicates the potential for superconductivity induced by other intercalants.

17.
Nat Commun ; 12(1): 1462, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674608

RESUMO

Spin-momentum locking is essential to the spin-split Fermi surfaces of inversion-symmetry broken materials, which are caused by either Rashba-type or Zeeman-type spin-orbit coupling (SOC). While the effect of Zeeman-type SOC on superconductivity has experimentally been shown recently, that of Rashba-type SOC remains elusive. Here we report on convincing evidence for the critical role of the spin-momentum locking on crystalline atomic-layer superconductors on surfaces, for which the presence of the Rashba-type SOC is demonstrated. In-situ electron transport measurements reveal that in-plane upper critical magnetic field is anomalously enhanced, reaching approximately three times the Pauli limit at T = 0. Our quantitative analysis clarifies that dynamic spin-momentum locking, a mechanism where spin is forced to flip at every elastic electron scattering, suppresses the Cooper pair-breaking parameter by orders of magnitude and thereby protects superconductivity. The present result provides a new insight into how superconductivity can survive the detrimental effects of strong magnetic fields and exchange interactions.

18.
Phys Rev Lett ; 103(26): 266102, 2009 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-20366323

RESUMO

Atomic motion through excitation of extended surface electronic states on Ge(001) is studied using extraction of electrons by scanning tunneling microscopy and density functional theory. Single-electron excitation into the surface states nonlocally alters the tilting orientation of the surface Ge dimer, and the change rate depends on the excitation energy. Theoretical investigations identify the excited electronic states for the dimer motion, and clarify the strong coupling between the surface state electrons and a local vibrational mode of the dimer for changing the tilting orientation.

19.
J Phys Condens Matter ; 31(25): 255001, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-30870820

RESUMO

The robust bonding between Fe and N atoms has the potential to fabricate a ferromagnetic Fe2N monolayer of a square lattice independently of the symmetry of the substrate. The electronic and magnetic properties tuned by the symmetry of the substrates are investigated by comparing the results of scanning tunnel microscopy and x-ray absorption spectroscopy/magnetic circular dichroism of the square Fe2N monolayer on the Cu(1 1 1) substrate with that on the Cu(0 0 1) substrate. A periodic electronic modulation of the Fe2N monolayer on the Cu(1 1 1) substrate is induced by the stripe superlattice due to the difference of the lattice symmetry between the Fe2N monolayer and the Cu(1 1 1) substrate. The electronic and magnetic properties of the monolayer are largely affected by the hybridization with the Cu substrate and the Fe magnetic moment is much reduced compared to the monolayer on the Cu(0 0 1) substrate.

20.
ACS Nano ; 13(10): 11981-11987, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31553174

RESUMO

Ultrafast carrier dynamics in a graphene system are very important in terms of optoelectronic devices. Recently, a twisted bilayer graphene has been discovered that possesses interesting electronic properties owing to strong modifications in interlayer couplings. Thus, a better understanding of ultrafast carrier dynamics in a twisted bilayer graphene is highly desired. Here, we reveal the unbalanced electron distributions in a quasicrystalline 30° twisted bilayer graphene (QCTBG), using time- and angle-resolved photoemission spectroscopy on the femtosecond time scale. We distinguish time-dependent electronic behavior between the upper- and lower-layer Dirac cones and gain insight into the dynamical properties of replica bands, which show characteristic signatures due to Umklapp scatterings. The experimental results are reproduced by solving a set of rate equations among the graphene layers and substrate. We find that the substrate buffer layer plays a key role in initial carrier injections to the upper and lower layers. Our results demonstrate that QCTBG can be a promising element for future devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA