Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Cell Sci ; 136(14)2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37365944

RESUMO

Rab proteins are small GTPases that regulate a myriad of intracellular membrane trafficking events. Rab29 is one of the Rab proteins phosphorylated by leucine-rich repeat kinase 2 (LRRK2), a Parkinson's disease-associated kinase. Recent studies suggest that Rab29 regulates LRRK2, whereas the mechanism by which Rab29 is regulated remained unclear. Here, we report a novel phosphorylation in Rab29 that is not mediated by LRRK2 and occurs under lysosomal overload stress. Mass spectrometry analysis identified the phosphorylation site of Rab29 as Ser185, and cellular expression studies of phosphomimetic mutants of Rab29 at Ser185 unveiled the involvement of this phosphorylation in counteracting lysosomal enlargement. PKCα and PKCδ were deemed to be involved in this phosphorylation and control the lysosomal localization of Rab29 in concert with LRRK2. These results implicate PKCs in the lysosomal stress response pathway comprised of Rab29 and LRRK2, and further underscore the importance of this pathway in the mechanisms underlying lysosomal homeostasis.


Assuntos
Lisossomos , Proteínas rab de Ligação ao GTP , Fosforilação , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Lisossomos/metabolismo , Mutação
2.
Proc Natl Acad Sci U S A ; 115(39): E9115-E9124, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30209220

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) has been associated with a variety of human diseases, including Parkinson's disease and Crohn's disease, whereas LRRK2 deficiency leads to accumulation of abnormal lysosomes in aged animals. However, the cellular roles and mechanisms of LRRK2-mediated lysosomal regulation have remained elusive. Here, we reveal a mechanism of stress-induced lysosomal response by LRRK2 and its target Rab GTPases. Lysosomal overload stress induced the recruitment of endogenous LRRK2 onto lysosomal membranes and activated LRRK2. An upstream adaptor Rab7L1 (Rab29) promoted the lysosomal recruitment of LRRK2. Subsequent family-wide screening of Rab GTPases that may act downstream of LRRK2 translocation revealed that Rab8a and Rab10 were specifically accumulated on overloaded lysosomes dependent on their phosphorylation by LRRK2. Rab7L1-mediated lysosomal targeting of LRRK2 attenuated the stress-induced lysosomal enlargement and promoted lysosomal secretion, whereas Rab8 stabilized by LRRK2 on stressed lysosomes suppressed lysosomal enlargement and Rab10 promoted lysosomal secretion, respectively. These effects were mediated by the recruitment of Rab8/10 effectors EHBP1 and EHBP1L1. LRRK2 deficiency augmented the chloroquine-induced lysosomal vacuolation of renal tubules in vivo. These results implicate the stress-responsive machinery composed of Rab7L1, LRRK2, phosphorylated Rab8/10, and their downstream effectors in the maintenance of lysosomal homeostasis.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Lisossomos/enzimologia , Estresse Fisiológico , Proteínas rab de Ligação ao GTP/metabolismo , Células 3T3 , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células HEK293 , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Lisossomos/genética , Camundongos , Camundongos Knockout , Fosforilação , Células RAW 264.7 , Proteínas rab de Ligação ao GTP/genética
3.
Neurobiol Dis ; 145: 105081, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32919031

RESUMO

Leucine-rich repeat kinase 2 (LRRK2), the major causative gene product of autosomal-dominant Parkinson's disease, is a protein kinase that phosphorylates a subset of Rab GTPases. Since pathogenic LRRK2 mutations increase its ability to phosphorylate Rab GTPases, elucidating the mechanisms of how Rab phosphorylation is regulated by LRRK2 is of great importance. We have previously reported that chloroquine-induced lysosomal stress facilitates LRRK2 phosphorylation of Rab10 to maintain lysosomal homeostasis. Here we reveal that Rab10 phosphorylation by LRRK2 is potently stimulated by treatment of cells with a set of lysosome stressors and clinically used lysosomotropic drugs. These agents commonly promoted the formation of LRRK2-coated enlarged lysosomes and extracellular release of lysosomal enzyme cathepsin B, the latter being dependent on LRRK2 kinase activity. In contrast to the increase in Rab10 phosphorylation, treatment with lysosomotropic drugs did not increase the enzymatic activity of LRRK2, as monitored by its autophosphorylation at Ser1292 residue, but rather enhanced the molecular proximity between LRRK2 and its substrate Rab GTPases on the cytosolic surface of lysosomes. Lysosomotropic drug-induced upregulation of Rab10 phosphorylation was likely a downstream event of Rab29 (Rab7L1)-mediated enzymatic activation of LRRK2. These results suggest a regulated process of Rab10 phosphorylation by LRRK2 that is associated with lysosomal overload stress, and provide insights into the novel strategies to halt the aberrant upregulation of LRRK2 kinase activity.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Lisossomos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Camundongos , Fosforilação/efeitos dos fármacos , Proteínas rab de Ligação ao GTP/efeitos dos fármacos
4.
Biochem Biophys Res Commun ; 495(2): 1708-1715, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29223392

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the major genetic cause of autosomal-dominantly inherited Parkinson's disease. LRRK2 is implicated in the regulation of intracellular trafficking, neurite outgrowth and PD risk in connection with Rab7L1, a putative interactor of LRRK2. Recently, a subset of Rab GTPases have been reported as substrates of LRRK2. Here we examine the kinase activity of LRRK2 on Rab7L1 in situ in cells. Phos-tag analyses and metabolic labeling assays revealed that LRRK2 readily phosphorylates Golgi-localized wild-type Rab7L1 but not mutant forms that are distributed in the cytoplasm. In vitro assays demonstrated direct phosphorylation of Rab7L1 by LRRK2. Subsequent screening using Rab7L1 mutants harboring alanine-substitution for every single Ser/Thr residue revealed that Ser72 is a major phosphorylation site, which was confirmed by using a phospho-Ser72-specific antibody. Moreover, LRRK2 pathogenic Parkinson mutants altogether markedly enhanced the phosphorylation at Ser72. The modulation of Ser72 phosphorylation in Rab7L1 resulted in an alteration of the morphology and distribution of the trans-Golgi network. These data collectively support the involvement of Rab7L1 phosphorylation in the LRRK2-mediated cellular and pathogenetic mechanisms.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Mutação , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteínas rab1 de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação/genética , Células HEK293 , Células HeLa , Humanos , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Doença de Parkinson/patologia , Fosforilação , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Serina/química , Serina/genética , Especificidade por Substrato , Proteínas rab de Ligação ao GTP , Proteínas rab1 de Ligação ao GTP/química , Proteínas rab1 de Ligação ao GTP/genética , Rede trans-Golgi/metabolismo , Rede trans-Golgi/patologia
5.
Front Cell Dev Biol ; 12: 1451988, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39286483

RESUMO

Exosomes are extracellular vesicles involved in intercellular signaling, carrying various cargo from microRNAs to metabolites and proteins. They are released by practically all cells and are highly heterogenous due to their origin and content. Several groups of exosomes are known to be involved in various pathological conditions including autoimmune, neurodegenerative, and infectious diseases as well as cancer, and therefore a substantial understanding of their biogenesis and release is crucial. Polarized cells display an array of specific functions originated from differentiated membrane trafficking systems and could lead to hints in untangling the complex process of exosomes. Indeed, recent advances have successfully revealed specific regulation pathways for releasing different subsets of exosomes from different sides of polarized epithelial cells, underscoring the importance of polarized cells in the field. Here we review current evidence on exosome biogenesis and release, especially in polarized cells, highlight the challenges that need to be combatted, and discuss potential applications related to exosomes of polarized-cell origin.

6.
Biomolecules ; 13(11)2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-38002327

RESUMO

Over the last decades, research on the pathobiology of neurodegenerative diseases has greatly evolved, revealing potential targets and mechanisms linked to their pathogenesis. Parkinson's disease (PD) is no exception, and recent studies point to the involvement of endolysosomal defects in PD. The endolysosomal system, which tightly controls a flow of endocytosed vesicles targeted either for degradation or recycling, is regulated by a number of Rab GTPases. Their associations with leucine-rich repeat kinase 2 (LRRK2), a major causative and risk protein of PD, has also been one of the hot topics in the field. Understanding their interactions and functions is critical for unraveling their contribution to PD pathogenesis. In this review, we summarize recent studies on LRRK2 and Rab GTPases and attempt to provide more insight into the interaction of LRRK2 with each Rab and its relationship to PD.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Endossomos/metabolismo , Endocitose , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA