RESUMO
BACKGROUND: Adenocarcinomas of both the gastroesophageal junction and stomach are molecularly complex, but differ with respect to epidemiology, etiology and survival. There are few data directly comparing the frequencies of single nucleotide mutations in cancer-related genes between the two sites. Sequencing of targeted gene panels may be useful in uncovering multiple genomic aberrations using a single test. METHODS: DNA from 92 gastroesophageal junction and 75 gastric adenocarcinoma resection specimens was extracted from formalin-fixed paraffin-embedded tissue. Targeted deep sequencing of 46 cancer-related genes was performed through emulsion PCR followed by semiconductor-based sequencing. Gastroesophageal junction and gastric carcinomas were contrasted with respect to mutational profiles, immunohistochemistry and in situ hybridization, as well as corresponding clinicopathologic data. RESULTS: Gastroesophageal junction carcinomas were associated with younger age, more frequent intestinal-type histology, more frequent p53 overexpression, and worse disease-free survival on multivariable analysis. Among all cases, 145 mutations were detected in 31 genes. TP53 mutations were the most common abnormality detected, and were more common in gastroesophageal junction carcinomas (42% vs. 27%, p = 0.036). Mutations in the Wnt pathway components APC and CTNNB1 were more common among gastric carcinomas (16% vs. 3%, p = 0.006), and gastric carcinomas were more likely to have ≥3 driver mutations detected (11% vs. 2%, p = 0.044). Twenty percent of cases had potentially actionable mutations identified. R132H and R132C missense mutations in the IDH1 gene were observed, and are the first reported mutations of their kind in gastric carcinoma. CONCLUSIONS: Panel sequencing of routine pathology material can yield mutational information on several driver genes, including some for which targeted therapies are available. Differing rates of mutations and clinicopathologic differences support a distinction between adenocarcinomas that arise in the gastroesophageal junction and those that arise in the stomach proper.
Assuntos
Doenças do Esôfago/genética , Doenças do Esôfago/patologia , Junção Esofagogástrica/patologia , Mutação , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Doenças do Esôfago/mortalidade , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , Estudos Retrospectivos , Neoplasias Gástricas/mortalidadeRESUMO
BACKGROUND: Ovarian low-grade serous carcinoma (LGSC) has fewer mutations than ovarian high-grade serous carcinoma (HGSC) and a less aggressive clinical course. However, an overwhelming majority of LGSC patients do not respond to conventional chemotherapy resulting in a poor long-term prognosis comparable to women diagnosed with HGSC. KRAS and BRAF mutations are common in LGSC, leading to clinical trials targeting the MAPK pathway. We assessed the stability of targetable somatic mutations over space and/or time in LGSC, with a view to inform stratified treatment strategies and clinical trial design. METHODS: Eleven LGSC cases with primary and recurrent paired samples were identified (stage IIB-IV). Tumor DNA was isolated from 1-4 formalin-fixed paraffin-embedded tumor blocks from both the primary and recurrence (n = 37 tumor and n = 7 normal samples). Mutational analysis was performed using the Ion Torrent AmpliSeqTM Cancer Panel, with targeted validation using Fluidigm-MiSeq, Sanger sequencing and/or Raindance Raindrop digital PCR. RESULTS: KRAS (3/11), BRAF (2/11) and/or NRAS (1/11) mutations were identified in five unique cases. A novel, non-synonymous mutation in SMAD4 was observed in one case. No somatic mutations were detected in the remaining six cases. In two cases with a single matched primary and recurrent sample, two KRAS hotspot mutations (G12V, G12R) were both stable over time. In three cases with multiple samplings from both the primary and recurrent surgery some mutations (NRAS Q61R, BRAF V600E, SMAD4 R361G) were stable across all samples, while others (KRAS G12V, BRAF G469V) were unstable. CONCLUSIONS: Overall, the majority of cases with detectable somatic mutations showed mutational stability over space and time while one of five cases showed both temporal and spatial mutational instability in presumed drivers of disease. Investigation of additional cases is required to confirm whether mutational heterogeneity in a minority of LGSC is a general phenomenon that should be factored into the design of clinical trials and stratified treatment for this patient population.
Assuntos
Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patologia , Análise Mutacional de DNA , Neoplasias Ovarianas/genética , Adulto , Feminino , GTP Fosfo-Hidrolases/genética , Heterogeneidade Genética , Humanos , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Mutação , Neoplasias Ovarianas/patologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras) , Proteínas ras/genéticaRESUMO
Circulating tumour DNA (ctDNA) detection via liquid biopsy is an emerging alternative to tissue biopsy, but its potential in treatment response monitoring and prognosis in triple negative breast cancer (TNBC) is not yet well understood. Here we determined the prevalence of actionable mutations detectable in ctDNA using a clinically validated cancer gene panel assay in patients with TNBC, without recurrence at the time of study entry. Sequencing of plasma DNA and validation of variants from 130 TNBC patients collected within 7 months of primary treatment completion revealed that 7.7% had detectable residual disease with a hotspot panel. Among neoadjuvant treated patients, we observed a trend where patients with incomplete pathologic response and positive ctDNA within 7 months of treatment completion were at much higher risk of reduced progression free survival. We propose that a high risk subset of early TNBC patients treated in neoadjuvant therapy protocols may be identifiable by combining tissue response and sensitive ctDNA detection.
RESUMO
In solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through accurate assessment of minimal residual disease (MRD) and therapeutic response monitoring. To overcome the sparsity of ctDNA fragments in low tumor fraction (TF) settings and increase MRD sensitivity, we previously leveraged genome-wide mutational integration through plasma whole-genome sequencing (WGS). Here we now introduce MRD-EDGE, a machine-learning-guided WGS ctDNA single-nucleotide variant (SNV) and copy-number variant (CNV) detection platform designed to increase signal enrichment. MRD-EDGESNV uses deep learning and a ctDNA-specific feature space to increase SNV signal-to-noise enrichment in WGS by ~300× compared to previous WGS error suppression. MRD-EDGECNV also reduces the degree of aneuploidy needed for ultrasensitive CNV detection through WGS from 1 Gb to 200 Mb, vastly expanding its applicability within solid tumors. We harness the improved performance to identify MRD following surgery in multiple cancer types, track changes in TF in response to neoadjuvant immunotherapy in lung cancer and demonstrate ctDNA shedding in precancerous colorectal adenomas. Finally, the radical signal-to-noise enrichment in MRD-EDGESNV enables plasma-only (non-tumor-informed) disease monitoring in advanced melanoma and lung cancer, yielding clinically informative TF monitoring for patients on immune-checkpoint inhibition.
Assuntos
DNA Tumoral Circulante , Variações do Número de Cópias de DNA , Aprendizado de Máquina , Neoplasia Residual , Carga Tumoral , Humanos , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/sangue , Neoplasia Residual/genética , Sequenciamento Completo do Genoma , Neoplasias/genética , Neoplasias/sangue , Neoplasias/terapia , Neoplasias/patologia , Polimorfismo de Nucleotídeo Único , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/sangue , Neoplasias Colorretais/genética , Neoplasias Colorretais/sangue , Neoplasias Colorretais/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/patologiaRESUMO
Assessing tumour gene fitness in physiologically-relevant model systems is challenging due to biological features of in vivo tumour regeneration, including extreme variations in single cell lineage progeny. Here we develop a reproducible, quantitative approach to pooled genetic perturbation in patient-derived xenografts (PDXs), by encoding single cell output from transplanted CRISPR-transduced cells in combination with a Bayesian hierarchical model. We apply this to 181 PDX transplants from 21 breast cancer patients. We show that uncertainty in fitness estimates depends critically on the number of transplant cell clones and the variability in clone sizes. We use a pathway-directed allelic series to characterize Notch signaling, and quantify TP53 / MDM2 drug-gene conditional fitness in outlier patients. We show that fitness outlier identification can be mirrored by pharmacological perturbation. Overall, we demonstrate that the gene fitness landscape in breast PDXs is dominated by inter-patient differences.
Assuntos
Neoplasias da Mama , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Animais , Teorema de Bayes , Neoplasias da Mama/genética , Modelos Animais de Doenças , Feminino , Xenoenxertos , Humanos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: Single-cell RNA sequencing (scRNA-seq) is a powerful tool for studying complex biological systems, such as tumor heterogeneity and tissue microenvironments. However, the sources of technical and biological variation in primary solid tumor tissues and patient-derived mouse xenografts for scRNA-seq are not well understood. RESULTS: We use low temperature (6 °C) protease and collagenase (37 °C) to identify the transcriptional signatures associated with tissue dissociation across a diverse scRNA-seq dataset comprising 155,165 cells from patient cancer tissues, patient-derived breast cancer xenografts, and cancer cell lines. We observe substantial variation in standard quality control metrics of cell viability across conditions and tissues. From the contrast between tissue protease dissociation at 37 °C or 6 °C, we observe that collagenase digestion results in a stress response. We derive a core gene set of 512 heat shock and stress response genes, including FOS and JUN, induced by collagenase (37 °C), which are minimized by dissociation with a cold active protease (6 °C). While induction of these genes was highly conserved across all cell types, cell type-specific responses to collagenase digestion were observed in patient tissues. CONCLUSIONS: The method and conditions of tumor dissociation influence cell yield and transcriptome state and are both tissue- and cell-type dependent. Interpretation of stress pathway expression differences in cancer single-cell studies, including components of surface immune recognition such as MHC class I, may be especially confounded. We define a core set of 512 genes that can assist with the identification of such effects in dissociated scRNA-seq experiments.
Assuntos
Genômica/métodos , Neoplasias/metabolismo , Análise de Sequência de RNA , Análise de Célula Única , Animais , Temperatura Baixa , Colagenases , Humanos , Camundongos , Peptídeo Hidrolases , Estresse Fisiológico , TranscriptomaRESUMO
CDC-like kinase phosphorylation of serine/arginine-rich proteins is central to RNA splicing reactions. Yet, the genomic network of CDC-like kinase-dependent RNA processing events remains poorly defined. Here, we explore the connectivity of genomic CDC-like kinase splicing functions by applying graduated, short-exposure, pharmacological CDC-like kinase inhibition using a novel small molecule (T3) with very high potency, selectivity, and cell-based stability. Using RNA-Seq, we define CDC-like kinase-responsive alternative splicing events, the large majority of which monotonically increase or decrease with increasing CDC-like kinase inhibition. We show that distinct RNA-binding motifs are associated with T3 response in skipped exons. Unexpectedly, we observe dose-dependent conjoined gene transcription, which is associated with motif enrichment in the last and second exons of upstream and downstream partners, respectively. siRNA knockdown of CLK2-associated genes significantly increases conjoined gene formation. Collectively, our results reveal an unexpected role for CDC-like kinase in conjoined gene formation, via regulation of 3'-end processing and associated splicing factors.The phosphorylation of serine/arginine-rich proteins by CDC-like kinase is a central regulatory mechanism for RNA splicing reactions. Here, the authors synthesize a novel small molecule CLK inhibitor and map CLK-responsive alternative splicing events and discover an effect on conjoined gene transcription.
Assuntos
Processamento Alternativo/efeitos dos fármacos , Imidazóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Pirimidinas/farmacologia , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Éxons , Perfilação da Expressão Gênica , Genoma Humano , Células HCT116 , Humanos , Imidazóis/síntese química , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/síntese química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Pirimidinas/síntese química , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/metabolismo , Relação Estrutura-Atividade , Transcrição GênicaRESUMO
Chordomas are rare, locally aggressive skull base neoplasms known for local recurrence and not-infrequent treatment failure. Current evidence supports the role of maximal safe surgical resection. In addition to open skull-base approaches, the endoscopic endonasal approach to clival chordomas has been reported with favorable albeit early results. Adjuvant radiation is prescribed following complete resection, alternatively for gross residual disease or at the time of recurrence. The modalities of adjuvant radiation therapy reported vary widely and include proton-beam, carbon-ion, fractionated photon radiotherapy, and photon and gamma-knife radiosurgery. As of now, no direct comparison is available, and high-level evidence demonstrating superiority of one modality over another is lacking. While systemic therapies have yet to form part of any first-line therapy for chordomas, a number of targeted agents have been evaluated to date that inhibit specific molecules and their respective pathways known to be implicated in chordomas. These include EGFR (erlotinib, gefitinib, lapatinib), PDGFR (imatinib), mTOR (rapamycin), and VEGF (bevacizumab). This article provides an update of the current multimodality treatment of cranial base chordomas, with an emphasis on how current understanding of molecular pathogenesis provides a framework for the development of novel targeted approaches.
RESUMO
BACKGROUND: Chordomas of the skull base are rare locally aggressive neoplasms with a predilection for encapsulating critical neurovascular structures, bony destruction and irregular growth patterns, and from which patients succumb to recurrence and treatment failures. METHODS: A review of the medical literature is performed, using standard search engines and identifying articles related to skull base chordomas, surgery, radiation therapy, chemotherapy, molecular genetics, and prospective trials. RESULTS: A synthesis of the literature is presented, including sections on pathology, treatment, molecular genetics, challenges, and future directions. CONCLUSION: Beyond an understanding of the current treatment paradigms for skull base chordomas, the reader gains insight into the collaborative approach applied to orphan diseases, of which chordomas is a prime exemplar.
RESUMO
Glioblastomas (GBM) are associated with high rates of relapse. These brain tumors are often resistant to chemotherapies like temozolomide (TMZ) and there are very few treatment options available to patients. We recently reported that polo-like kinase-1 (PLK1) is associated with the proliferative subtype of GBM; which has the worst prognosis. In this study, we addressed the potential of repurposing disulfiram (DSF), a drug widely used to control alcoholism for the past six decades. DSF has good safety profiles and penetrates the blood-brain barrier. Here we report that DSF inhibited the growth of TMZ resistant GBM cells, (IC90=100 nM), but did not affect normal human astrocytes. At similar DSF concentrations, self-renewal was blocked by ~100% using neurosphere growth assays. Likewise the drug completely inhibited the self-renewal of the BT74 and GBM4 primary cell lines. Additionally, DSF suppressed growth and self-renewal of primary cells from two GBM tumors.These cells were resistant to TMZ, had unmethylated MGMT, and expressed high levels of PLK1. Consistent with its role in suppressing GBM growth, DSF inhibited the expression of PLK1 in GBM cells. Likewise, PLK1 inhibition with siRNA, or small molecules (BI-2536 or BI-6727) blocked growth of TMZ resistant cells. Our studies suggest that DSF has the potential to be repurposed for treatment of refractory GBM.