Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 448(7157): 1054-7, 2007 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-17728758

RESUMO

There are five known taste modalities in humans: sweet, bitter, sour, salty and umami (the taste of monosodium glutamate). Although the fruitfly Drosophila melanogaster tastes sugars, salts and noxious chemicals, the nature and number of taste modalities in this organism is not clear. Previous studies have identified one taste cell population marked by the gustatory receptor gene Gr5a that detects sugars, and a second population marked by Gr66a that detects bitter compounds. Here we identify a novel taste modality in this insect: the taste of carbonated water. We use a combination of anatomical, calcium imaging and behavioural approaches to identify a population of taste neurons that detects CO2 and mediates taste acceptance behaviour. The taste of carbonation may allow Drosophila to detect and obtain nutrients from growing microorganisms. Whereas CO2 detection by the olfactory system mediates avoidance, CO2 detection by the gustatory system mediates acceptance behaviour, demonstrating that the context of CO2 determines appropriate behaviour. This work opens up the possibility that the taste of carbonation may also exist in other organisms.


Assuntos
Dióxido de Carbono/análise , Drosophila melanogaster/fisiologia , Paladar/fisiologia , Animais , Comportamento Animal , Encéfalo/citologia , Encéfalo/metabolismo , Dióxido de Carbono/química , Gelo-Seco , Preferências Alimentares , Gases/química , Concentração de Íons de Hidrogênio , Ligantes , Neurônios/metabolismo , Olfato/fisiologia , Bicarbonato de Sódio/análise , Soluções/química , Água/química
2.
Neuron ; 49(2): 285-95, 2006 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-16423701

RESUMO

The sense of taste allows animals to distinguish nutritious and toxic substances and elicits food acceptance or avoidance behaviors. In Drosophila, taste cells that contain the Gr5a receptor are necessary for acceptance behavior, and cells with the Gr66a receptor are necessary for avoidance. To determine the cellular substrates of taste behaviors, we monitored taste cell activity in vivo with the genetically encoded calcium indicator G-CaMP. These studies reveal that Gr5a cells selectively respond to sugars and Gr66a cells to bitter compounds. Flies are attracted to sugars and avoid bitter substances, suggesting that Gr5a cell activity is sufficient to mediate acceptance behavior and that Gr66a cell activation mediates avoidance. As a direct test of this hypothesis, we inducibly activated different taste neurons by expression of an exogenous ligand-gated ion channel and found that cellular activity is sufficient to drive taste behaviors. These studies demonstrate that taste cells are tuned by taste category and are hardwired to taste behaviors.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/fisiologia , Paladar/fisiologia , Animais , Animais Geneticamente Modificados , Encéfalo/citologia , Mapeamento Encefálico , Drosophila , Feminino , Corantes Fluorescentes , Processamento de Imagem Assistida por Computador , Ligantes , Microscopia Confocal , Neurônios/fisiologia , Órgãos dos Sentidos/fisiologia
3.
Cell ; 117(7): 981-91, 2004 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-15210117

RESUMO

Drosophila taste compounds with gustatory neurons on many parts of the body, suggesting that a fly detects both the location and quality of a food source. For example, activation of taste neurons on the legs causes proboscis extension or retraction, whereas activation of proboscis taste neurons causes food ingestion or rejection. We examined whether the features of taste location and taste quality are mapped in the fly brain using molecular, genetic, and behavioral approaches. We find that projections are segregated by the category of tastes that they recognize: neurons that recognize sugars project to a region different from those recognizing noxious substances. Transgenic axon labeling experiments also demonstrate that gustatory projections are segregated based on their location in the periphery. These studies reveal the gustatory map in the first relay of the fly brain and demonstrate that taste quality and position are represented in anatomical projection patterns.


Assuntos
Encéfalo/citologia , Proteínas de Drosophila/genética , Drosophila/fisiologia , Receptores Odorantes/fisiologia , Paladar/genética , Animais , Animais Geneticamente Modificados , Axônios/metabolismo , Comportamento Animal , Mapeamento Encefálico , Drosophila/anatomia & histologia , Proteínas de Drosophila/classificação , Técnica Indireta de Fluorescência para Anticorpo , Genes de Insetos , Proteínas de Fluorescência Verde , Proteínas Luminescentes/metabolismo , Neurônios Aferentes/metabolismo , Regiões Promotoras Genéticas , Receptores Odorantes/genética , Relação Estrutura-Atividade , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA