Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Breast Cancer Res ; 26(1): 109, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956693

RESUMO

BACKGROUND: The effect of gender-affirming testosterone therapy (TT) on breast cancer risk is unclear. This study investigated the association between TT and breast tissue composition and breast tissue density in trans masculine individuals (TMIs). METHODS: Of the 444 TMIs who underwent chest-contouring surgeries between 2013 and 2019, breast tissue composition was assessed in 425 TMIs by the pathologists (categories of lobular atrophy and stromal composition) and using our automated deep-learning algorithm (% epithelium, % fibrous stroma, and % fat). Forty-two out of 444 TMIs had mammography prior to surgery and their breast tissue density was read by a radiologist. Mammography digital files, available for 25/42 TMIs, were analyzed using the LIBRA software to obtain percent density, absolute dense area, and absolute non-dense area. Linear regression was used to describe the associations between duration of TT use and breast tissue composition or breast tissue density measures, while adjusting for potential confounders. Analyses stratified by body mass index were also conducted. RESULTS: Longer duration of TT use was associated with increasing degrees of lobular atrophy (p < 0.001) but not fibrous content (p = 0.82). Every 6 months of TT was associated with decreasing amounts of epithelium (exp(ß) = 0.97, 95% CI 0.95,0.98, adj p = 0.005) and fibrous stroma (exp(ß) = 0.99, 95% CI 0.98,1.00, adj p = 0.05), but not fat (exp(ß) = 1.01, 95%CI 0.98,1.05, adj p = 0.39). The effect of TT on breast epithelium was attenuated in overweight/obese TMIs (exp(ß) = 0.98, 95% CI 0.95,1.01, adj p = 0.14). When comparing TT users versus non-users, TT users had 28% less epithelium (exp(ß) = 0.72, 95% CI 0.58,0.90, adj p = 0.003). There was no association between TT and radiologist's breast density assessment (p = 0.58) or LIBRA measurements (p > 0.05). CONCLUSIONS: TT decreases breast epithelium, but this effect is attenuated in overweight/obese TMIs. TT has the potential to affect the breast cancer risk of TMIs. Further studies are warranted to elucidate the effect of TT on breast density and breast cancer risk.


Assuntos
Densidade da Mama , Mama , Mamografia , Testosterona , Pessoas Transgênero , Humanos , Densidade da Mama/efeitos dos fármacos , Feminino , Adulto , Testosterona/uso terapêutico , Mamografia/métodos , Mama/diagnóstico por imagem , Mama/patologia , Masculino , Pessoa de Meia-Idade , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/diagnóstico por imagem , Índice de Massa Corporal , Procedimentos de Readequação Sexual/efeitos adversos , Procedimentos de Readequação Sexual/métodos
2.
Artigo em Inglês | MEDLINE | ID: mdl-38916820

RESUMO

PURPOSE: Few breast cancer risk assessment models account for the risk profiles of different tumor subtypes. This study evaluated whether a subtype-specific approach improves discrimination. METHODS: Among 3389 women who had a screening mammogram and were later diagnosed with invasive breast cancer we performed multinomial logistic regression with tumor subtype as the outcome and known breast cancer risk factors as predictors. Tumor subtypes were defined by expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) based on immunohistochemistry. Discrimination was assessed with the area under the receiver operating curve (AUC). Absolute risk of each subtype was estimated by proportioning Gail absolute risk estimates by the predicted probabilities for each subtype. We then compared risk factor distributions for women in the highest deciles of risk for each subtype. RESULTS: There were 3,073 ER/PR+ HER2 - , 340 ER/PR +HER2 + , 126 ER/PR-ER2+, and 300 triple-negative breast cancers (TNBC). Discrimination differed by subtype; ER/PR-HER2+ (AUC: 0.64, 95% CI 0.59, 0.69) and TNBC (AUC: 0.64, 95% CI 0.61, 0.68) had better discrimination than ER/PR+HER2+ (AUC: 0.61, 95% CI 0.58, 0.64). Compared to other subtypes, patients at high absolute risk of TNBC were younger, mostly Black, had no family history of breast cancer, and higher BMI. Those at high absolute risk of HER2+ cancers were younger and had lower BMI. CONCLUSION: Our study provides proof of concept that stratifying risk prediction for breast cancer subtypes may enable identification of patients with unique profiles conferring increased risk for tumor subtypes.

3.
Br J Dermatol ; 190(6): 789-797, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38330217

RESUMO

The field of dermatology is experiencing the rapid deployment of artificial intelligence (AI), from mobile applications (apps) for skin cancer detection to large language models like ChatGPT that can answer generalist or specialist questions about skin diagnoses. With these new applications, ethical concerns have emerged. In this scoping review, we aimed to identify the applications of AI to the field of dermatology and to understand their ethical implications. We used a multifaceted search approach, searching PubMed, MEDLINE, Cochrane Library and Google Scholar for primary literature, following the PRISMA Extension for Scoping Reviews guidance. Our advanced query included terms related to dermatology, AI and ethical considerations. Our search yielded 202 papers. After initial screening, 68 studies were included. Thirty-two were related to clinical image analysis and raised ethical concerns for misdiagnosis, data security, privacy violations and replacement of dermatologist jobs. Seventeen discussed limited skin of colour representation in datasets leading to potential misdiagnosis in the general population. Nine articles about teledermatology raised ethical concerns, including the exacerbation of health disparities, lack of standardized regulations, informed consent for AI use and privacy challenges. Seven addressed inaccuracies in the responses of large language models. Seven examined attitudes toward and trust in AI, with most patients requesting supplemental assessment by a physician to ensure reliability and accountability. Benefits of AI integration into clinical practice include increased patient access, improved clinical decision-making, efficiency and many others. However, safeguards must be put in place to ensure the ethical application of AI.


The use of artificial intelligence (AI) in dermatology is rapidly increasing, with applications in dermatopathology, medical dermatology, cutaneous surgery, microscopy/spectroscopy and the identification of prognostic biomarkers (characteristics that provide information on likely patient health outcomes). However, with the rise of AI in dermatology, ethical concerns have emerged. We reviewed the existing literature to identify applications of AI in the field of dermatology and understand the ethical implications. Our search initially identified 202 papers, and after we went through them (screening), 68 were included in our review. We found that ethical concerns are related to the use of AI in the areas of clinical image analysis, teledermatology, natural language processing models, privacy, skin of colour representation, and patient and provider attitudes toward AI. We identified nine ethical principles to facilitate the safe use of AI in dermatology. These ethical principles include fairness, inclusivity, transparency, accountability, security, privacy, reliability, informed consent and conflict of interest. Although there are many benefits of integrating AI into clinical practice, our findings highlight how safeguards must be put in place to reduce rising ethical concerns.


Assuntos
Inteligência Artificial , Dermatologia , Humanos , Inteligência Artificial/ética , Dermatologia/ética , Dermatologia/métodos , Telemedicina/ética , Consentimento Livre e Esclarecido/ética , Confidencialidade/ética , Erros de Diagnóstico/ética , Erros de Diagnóstico/prevenção & controle , Segurança Computacional/ética , Dermatopatias/diagnóstico , Dermatopatias/terapia , Aplicativos Móveis/ética
4.
Breast Cancer Res ; 25(1): 92, 2023 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-37544983

RESUMO

BACKGROUND: Breast density is strongly associated with breast cancer risk. Fully automated quantitative density assessment methods have recently been developed that could facilitate large-scale studies, although data on associations with long-term breast cancer risk are limited. We examined LIBRA assessments and breast cancer risk and compared results to prior assessments using Cumulus, an established computer-assisted method requiring manual thresholding. METHODS: We conducted a cohort study among 21,150 non-Hispanic white female participants of the Research Program in Genes, Environment and Health of Kaiser Permanente Northern California who were 40-74 years at enrollment, followed for up to 10 years, and had archived processed screening mammograms acquired on Hologic or General Electric full-field digital mammography (FFDM) machines and prior Cumulus density assessments available for analysis. Dense area (DA), non-dense area (NDA), and percent density (PD) were assessed using LIBRA software. Cox regression was used to estimate hazard ratios (HRs) for breast cancer associated with DA, NDA and PD modeled continuously in standard deviation (SD) increments, adjusting for age, mammogram year, body mass index, parity, first-degree family history of breast cancer, and menopausal hormone use. We also examined differences by machine type and breast view. RESULTS: The adjusted HRs for breast cancer associated with each SD increment of DA, NDA and PD were 1.36 (95% confidence interval, 1.18-1.57), 0.85 (0.77-0.93) and 1.44 (1.26-1.66) for LIBRA and 1.44 (1.33-1.55), 0.81 (0.74-0.89) and 1.54 (1.34-1.77) for Cumulus, respectively. LIBRA results were generally similar by machine type and breast view, although associations were strongest for Hologic machines and mediolateral oblique views. Results were also similar during the first 2 years, 2-5 years and 5-10 years after the baseline mammogram. CONCLUSION: Associations with breast cancer risk were generally similar for LIBRA and Cumulus density measures and were sustained for up to 10 years. These findings support the suitability of fully automated LIBRA assessments on processed FFDM images for large-scale research on breast density and cancer risk.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/epidemiologia , Densidade da Mama , Estudos de Coortes , Brancos , Mama/diagnóstico por imagem , Mamografia/métodos , Fatores de Risco , Estudos de Casos e Controles
5.
Breast Cancer Res Treat ; 198(3): 535-544, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36800118

RESUMO

PURPOSE: Mammographic density (MD) is a strong breast cancer risk factor. MD may change over time, with potential implications for breast cancer risk. Few studies have assessed associations between MD change and breast cancer in racially diverse populations. We investigated the relationships between MD and MD change over time and breast cancer risk in a large, diverse screening cohort. MATERIALS AND METHODS: We retrospectively analyzed data from 8462 women who underwent ≥ 2 screening mammograms from Sept. 2010 to Jan. 2015 (N = 20,766 exams); 185 breast cancers were diagnosed 1-7 years after screening. Breast percent density (PD) and dense area (DA) were estimated from raw digital mammograms (Hologic Inc.) using LIBRA (v1.0.4). For each MD measure, we modeled breast density change between two sequential visits as a function of demographic and risk covariates. We used Cox regression to examine whether varying degrees of breast density change were associated with breast cancer risk, accounting for multiple exams per woman. RESULTS: PD at any screen was significantly associated with breast cancer risk (hazard ratio (HR) for PD = 1.03 (95% CI [1.01, 1.05], p < 0.0005), but neither change in breast density nor more extreme than expected changes in breast density were associated with breast cancer risk. We found no evidence of differences in density change or breast cancer risk due to density change by race. Results using DA were essentially identical. CONCLUSIONS: Using a large racially diverse cohort, we found no evidence of association between short-term change in MD and risk of breast cancer, suggesting that short-term MD change is not a strong predictor for risk.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/epidemiologia , Densidade da Mama , Estudos Retrospectivos , Detecção Precoce de Câncer , Mamografia/métodos , Fatores de Risco
6.
Radiology ; 306(3): e222575, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36749212

RESUMO

Breast density is an independent risk factor for breast cancer. In digital mammography and digital breast tomosynthesis, breast density is assessed visually using the four-category scale developed by the American College of Radiology Breast Imaging Reporting and Data System (5th edition as of November 2022). Epidemiologically based risk models, such as the Tyrer-Cuzick model (version 8), demonstrate superior modeling performance when mammographic density is incorporated. Beyond just density, a separate mammographic measure of breast cancer risk is parenchymal textural complexity. With advancements in radiomics and deep learning, mammographic textural patterns can be assessed quantitatively and incorporated into risk models. Other supplemental screening modalities, such as breast US and MRI, offer independent risk measures complementary to those derived from mammography. Breast US allows the two components of fibroglandular tissue (stromal and glandular) to be visualized separately in a manner that is not possible with mammography. A higher glandular component at screening breast US is associated with higher risk. With MRI, a higher background parenchymal enhancement of the fibroglandular tissue has also emerged as an imaging marker for risk assessment. Imaging markers observed at mammography, US, and MRI are powerful tools in refining breast cancer risk prediction, beyond mammographic density alone.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Densidade da Mama , Mama/diagnóstico por imagem , Mamografia/métodos , Fatores de Risco
7.
Radiology ; 308(3): e230367, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37750771

RESUMO

Background Background parenchymal enhancement (BPE) at breast MRI has been associated with increased breast cancer risk in several independent studies. However, variability of subjective BPE assessments have precluded its use in clinical practice. Purpose To examine the association between fully objective measures of BPE at MRI and odds of breast cancer. Materials and Methods This prospective case-control study included patients who underwent a bilateral breast MRI examination and were receiving care at one of three centers in the United States from November 2010 to July 2017. Breast volume, fibroglandular tissue (FGT) volume, and BPE were quantified using fully automated software. Fat volume was defined as breast volume minus FGT volume. BPE extent was defined as the proportion of FGT voxels with enhancement of 20% or more. Spearman rank correlation between quantitative BPE extent and Breast Imaging Reporting and Data System (BI-RADS) BPE categories assigned by an experienced board-certified breast radiologist was estimated. With use of multivariable logistic regression, breast cancer case-control status was regressed on tertiles (low, moderate, and high) of BPE, FGT volume, and fat volume, with adjustment for covariates. Results In total, 536 case participants with breast cancer (median age, 48 years [IQR, 43-55 years]) and 940 cancer-free controls (median age, 46 years [IQR, 38-55 years]) were included. BPE extent was positively associated with BI-RADS BPE (rs = 0.54; P < .001). Compared with low BPE extent (range, 2.9%-34.2%), high BPE extent (range, 50.7%-97.3%) was associated with increased odds of breast cancer (odds ratio [OR], 1.74 [95% CI: 1.23, 2.46]; P for trend = .002) in a multivariable model also including FGT volume (OR, 1.39 [95% CI: 0.97, 1.98]) and fat volume (OR, 1.46 [95% CI: 1.04, 2.06]). The association of high BPE extent with increased odds of breast cancer was similar for premenopausal and postmenopausal women (ORs, 1.75 and 1.83, respectively; interaction P = .73). Conclusion Objectively measured BPE at breast MRI is associated with increased breast cancer odds for both premenopausal and postmenopausal women. Clinical trial registration no. NCT02301767 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Bokacheva in this issue.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Pessoa de Meia-Idade , Neoplasias da Mama/diagnóstico por imagem , Estudos de Casos e Controles , Imageamento por Ressonância Magnética , Mama/diagnóstico por imagem , Certificação
8.
Breast Cancer Res ; 24(1): 14, 2022 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-35184757

RESUMO

BACKGROUND: Improved breast cancer risk assessment models are needed to enable personalized screening strategies that achieve better harm-to-benefit ratio based on earlier detection and better breast cancer outcomes than existing screening guidelines. Computational mammographic phenotypes have demonstrated a promising role in breast cancer risk prediction. With the recent exponential growth of computational efficiency, the artificial intelligence (AI) revolution, driven by the introduction of deep learning, has expanded the utility of imaging in predictive models. Consequently, AI-based imaging-derived data has led to some of the most promising tools for precision breast cancer screening. MAIN BODY: This review aims to synthesize the current state-of-the-art applications of AI in mammographic phenotyping of breast cancer risk. We discuss the fundamentals of AI and explore the computing advancements that have made AI-based image analysis essential in refining breast cancer risk assessment. Specifically, we discuss the use of data derived from digital mammography as well as digital breast tomosynthesis. Different aspects of breast cancer risk assessment are targeted including (a) robust and reproducible evaluations of breast density, a well-established breast cancer risk factor, (b) assessment of a woman's inherent breast cancer risk, and (c) identification of women who are likely to be diagnosed with breast cancers after a negative or routine screen due to masking or the rapid and aggressive growth of a tumor. Lastly, we discuss AI challenges unique to the computational analysis of mammographic imaging as well as future directions for this promising research field. CONCLUSIONS: We provide a useful reference for AI researchers investigating image-based breast cancer risk assessment while indicating key priorities and challenges that, if properly addressed, could accelerate the implementation of AI-assisted risk stratification to future refine and individualize breast cancer screening strategies.


Assuntos
Inteligência Artificial , Neoplasias da Mama , Neoplasias da Mama/diagnóstico por imagem , Detecção Precoce de Câncer , Feminino , Humanos , Mamografia/métodos
9.
Breast Cancer Res Treat ; 189(3): 827-835, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34342765

RESUMO

PURPOSE: Black women are more likely than non-Hispanic White women to be diagnosed with triple negative breast cancer (TNBC), an aggressive subtype with limited treatment options. The study objective was to evaluate the associations of known breast cancer risk factors, including breast density, with TNBC among Black women. METHODS: This study included Black women who underwent screening mammography between the ages of 40-84 years at a University of Pennsylvania Health System between 2010 and 2015. Cox proportional hazard models using multiple imputation with chained equations were used to estimate hazard ratios and 95% confidence intervals for risk factors for ER/PR+/HER2- and TNBC. RESULTS: Among 25,013 Black women, there were 330 incident breast cancers (1.3%) during a mean follow-up of 5.8 years; 218 (66.1%) ER/PR+ HER- and 61 (18.1%) TNBC. Having dense breasts (heterogeneously dense or extremely dense) vs. non-dense breasts (almost entirely fatty or scattered areas of fibroglandular density) increased risk of ER/PR+/HER2- breast cancer almost 80% (HR 1.79, 95% CI 1.32-2.43) and TNBC more than twofold (HR 2.53, 1.45-4.44). Older age was associated with an increased risk for ER/PR+/HER2- (HR 1.04, 1.03-1.06) and TNBC (HR 1.03, 1.00-1.05). Having a BMI of > 30 kg/m2 was associated with an increased risk (HR 2.77, 1.05-7.30) for TNBC and an increased risk of ERPR+/HER2- breast cancer in postmenopausal but not pre-menopausal women (p-interaction = 0.016). CONCLUSION: Our results suggest that breast density and obesity are strong risk factors for TNBC among Black women. Understanding breast cancer subtype specific risk factors among Black women can help improve risk assessment.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/epidemiologia , Detecção Precoce de Câncer , Feminino , Humanos , Mamografia , Pessoa de Meia-Idade , Receptor ErbB-2 , Fatores de Risco , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/epidemiologia
10.
Radiology ; 301(3): 561-568, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34519572

RESUMO

Background While digital breast tomosynthesis (DBT) is rapidly replacing digital mammography (DM) in breast cancer screening, the potential of DBT density measures for breast cancer risk assessment remains largely unexplored. Purpose To compare associations of breast density estimates from DBT and DM with breast cancer. Materials and Methods This retrospective case-control study used contralateral DM/DBT studies from women with unilateral breast cancer and age- and ethnicity-matched controls (September 19, 2011-January 6, 2015). Volumetric percent density (VPD%) was estimated from DBT using previously validated software. For comparison, the publicly available Laboratory for Individualized Breast Radiodensity Assessment software package, or LIBRA, was used to estimate area-based percent density (APD%) from raw and processed DM images. The commercial Quantra and Volpara software packages were applied to raw DM images to estimate VPD% with use of physics-based models. Density measures were compared by using Spearman correlation coefficients (r), and conditional logistic regression was performed to examine density associations (odds ratios [OR]) with breast cancer, adjusting for age and body mass index. Results A total of 132 women diagnosed with breast cancer (mean age ± standard deviation [SD], 60 years ± 11) and 528 controls (mean age, 60 years ± 11) were included. Moderate correlations between DBT and DM density measures (r = 0.32-0.75; all P < .001) were observed. Volumetric density estimates calculated from DBT (OR, 2.3 [95% CI: 1.6, 3.4] per SD for VPD%DBT) were more strongly associated with breast cancer than DM-derived density for both APD% (OR, 1.3 [95% CI: 0.9, 1.9] [P < .001] and 1.7 [95% CI: 1.2, 2.3] [P = .004] per SD for LIBRA raw and processed data, respectively) and VPD% (OR, 1.6 [95% CI: 1.1, 2.4] [P = .01] and 1.7 [95% CI: 1.2, 2.6] [P = .04] per SD for Volpara and Quantra, respectively). Conclusion The associations between quantitative breast density estimates and breast cancer risk are stronger for digital breast tomosynthesis compared with digital mammography. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Yaffe in this issue.


Assuntos
Densidade da Mama , Neoplasias da Mama/diagnóstico por imagem , Mamografia/métodos , Mama/diagnóstico por imagem , Estudos de Casos e Controles , Feminino , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos
11.
Radiology ; 301(2): 295-308, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34427465

RESUMO

Background Suppression of background parenchymal enhancement (BPE) is commonly observed after neoadjuvant chemotherapy (NAC) at contrast-enhanced breast MRI. It was hypothesized that nonsuppressed BPE may be associated with inferior response to NAC. Purpose To investigate the relationship between lack of BPE suppression and pathologic response. Materials and Methods A retrospective review was performed for women with menopausal status data who were treated for breast cancer by one of 10 drug arms (standard NAC with or without experimental agents) between May 2010 and November 2016 in the Investigation of Serial Studies to Predict Your Therapeutic Response with Imaging and Molecular Analysis 2, or I-SPY 2 TRIAL (NCT01042379). Patients underwent MRI at four points: before treatment (T0), early treatment (T1), interregimen (T2), and before surgery (T3). BPE was quantitatively measured by using automated fibroglandular tissue segmentation. To test the hypothesis effectively, a subset of examinations with BPE with high-quality segmentation was selected. BPE change from T0 was defined as suppressed or nonsuppressed for each point. The Fisher exact test and the Z tests of proportions with Yates continuity correction were used to examine the relationship between BPE suppression and pathologic complete response (pCR) in hormone receptor (HR)-positive and HR-negative cohorts. Results A total of 3528 MRI scans from 882 patients (mean age, 48 years ± 10 [standard deviation]) were reviewed and the subset of patients with high-quality BPE segmentation was determined (T1, 433 patients; T2, 396 patients; T3, 380 patients). In the HR-positive cohort, an association between lack of BPE suppression and lower pCR rate was detected at T2 (nonsuppressed vs suppressed, 11.8% [six of 51] vs 28.9% [50 of 173]; difference, 17.1% [95% CI: 4.7, 29.5]; P = .02) and T3 (nonsuppressed vs suppressed, 5.3% [two of 38] vs 27.4% [48 of 175]; difference, 22.2% [95% CI: 10.9, 33.5]; P = .003). In the HR-negative cohort, patients with nonsuppressed BPE had lower estimated pCR rate at all points, but the P values for the association were all greater than .05. Conclusions In hormone receptor-positive breast cancer, lack of background parenchymal enhancement suppression may indicate inferior treatment response. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Philpotts in this issue.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Quimioterapia Adjuvante/métodos , Meios de Contraste , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Terapia Neoadjuvante/métodos , Adulto , Idoso , Mama/diagnóstico por imagem , Estudos de Coortes , Feminino , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , Resultado do Tratamento , Adulto Jovem
12.
Eur J Nucl Med Mol Imaging ; 48(12): 3990-4001, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33677641

RESUMO

PURPOSE: Probe-based dynamic (4-D) imaging modalities capture breast intratumor heterogeneity both spatially and kinetically. Characterizing heterogeneity through tumor sub-populations with distinct functional behavior may elucidate tumor biology to improve targeted therapy specificity and enable precision clinical decision making. METHODS: We propose an unsupervised clustering algorithm for 4-D imaging that integrates Markov-Random Field (MRF) image segmentation with time-series analysis to characterize kinetic intratumor heterogeneity. We applied this to dynamic FDG PET scans by identifying distinct time-activity curve (TAC) profiles with spatial proximity constraints. We first evaluated algorithm performance using simulated dynamic data. We then applied our algorithm to a dataset of 50 women with locally advanced breast cancer imaged by dynamic FDG PET prior to treatment and followed to monitor for disease recurrence. A functional tumor heterogeneity (FTH) signature was then extracted from functionally distinct sub-regions within each tumor. Cross-validated time-to-event analysis was performed to assess the prognostic value of FTH signatures compared to established histopathological and kinetic prognostic markers. RESULTS: Adding FTH signatures to a baseline model of known predictors of disease recurrence and established FDG PET uptake and kinetic markers improved the concordance statistic (C-statistic) from 0.59 to 0.74 (p = 0.005). Unsupervised hierarchical clustering of the FTH signatures identified two significant (p < 0.001) phenotypes of tumor heterogeneity corresponding to high and low FTH. Distributions of FDG flux, or Ki, were significantly different (p = 0.04) across the two phenotypes. CONCLUSIONS: Our findings suggest that imaging markers of FTH add independent value beyond standard PET imaging metrics in predicting recurrence-free survival in breast cancer and thus merit further study.


Assuntos
Neoplasias da Mama , Fluordesoxiglucose F18 , Biomarcadores , Neoplasias da Mama/diagnóstico por imagem , Análise por Conglomerados , Feminino , Humanos , Recidiva Local de Neoplasia , Tomografia por Emissão de Pósitrons , Prognóstico
13.
Breast Cancer Res ; 22(1): 138, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33287857

RESUMO

BACKGROUND: Background parenchymal enhancement (BPE) on breast magnetic resonance imaging (MRI) may be associated with breast cancer risk, but previous studies of the association are equivocal and limited by incomplete blinding of BPE assessment. In this study, we evaluated the association between BPE and breast cancer based on fully blinded assessments of BPE in the unaffected breast. METHODS: The Imaging and Epidemiology (IMAGINE) study is a multicenter breast cancer case-control study of women receiving diagnostic, screening, or follow-up breast MRI, recruited from three comprehensive cancer centers in the USA. Cases had a first diagnosis of unilateral breast cancer and controls had no history of or current breast cancer. A single board-certified breast radiologist with 12 years' experience, blinded to case-control status and clinical information, assessed the unaffected breast for BPE without view of the affected breast of cases (or the corresponding breast laterality of controls). The association between BPE and breast cancer was estimated by multivariable logistic regression separately for premenopausal and postmenopausal women. RESULTS: The analytic dataset included 835 cases and 963 controls. Adjusting for fibroglandular tissue (breast density), age, race/ethnicity, BMI, parity, family history of breast cancer, BRCA1/BRCA2 mutations, and other confounders, moderate/marked BPE (vs minimal/mild BPE) was associated with breast cancer among premenopausal women [odds ratio (OR) 1.49, 95% CI 1.05-2.11; p = 0.02]. Among postmenopausal women, mild/moderate/marked vs minimal BPE had a similar, but statistically non-significant, association with breast cancer (OR 1.45, 95% CI 0.92-2.27; p = 0.1). CONCLUSIONS: BPE is associated with breast cancer in premenopausal women, and possibly postmenopausal women, after adjustment for breast density and confounders. Our results suggest that BPE should be evaluated alongside breast density for inclusion in models predicting breast cancer risk.


Assuntos
Neoplasias da Mama/epidemiologia , Mama/diagnóstico por imagem , Imageamento por Ressonância Magnética/estatística & dados numéricos , Programas de Rastreamento/estatística & dados numéricos , Adulto , Idoso , Mama/patologia , Densidade da Mama , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Estudos de Casos e Controles , Meios de Contraste/administração & dosagem , Feminino , Seguimentos , Humanos , Imageamento por Ressonância Magnética/métodos , Programas de Rastreamento/métodos , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Retrospectivos , Medição de Risco/métodos , Medição de Risco/estatística & dados numéricos , Fatores de Risco , Adulto Jovem
14.
Radiology ; 296(1): 24-31, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32396041

RESUMO

Background The associations of density measures from the publicly available Laboratory for Individualized Breast Radiodensity Assessment (LIBRA) software with breast cancer have primarily focused on estimates from the contralateral breast at the time of diagnosis. Purpose To evaluate LIBRA measures on mammograms obtained before breast cancer diagnosis and compare their performance to established density measures. Materials and Methods For this retrospective case-control study, full-field digital mammograms in for-processing (raw) and for-presentation (processed) formats were obtained (March 2008 to December 2011) in women who developed breast cancer an average of 2 years later and in age-matched control patients. LIBRA measures included absolute dense area and area percent density (PD) from both image formats. For comparison, dense area and PD were assessed by using the research software (Cumulus), and volumetric PD (VPD) and absolute dense volume were estimated with a commercially available software (Volpara). Density measures were compared by using Spearman correlation coefficients (r), and conditional logistic regression (odds ratios [ORs] and 95% confidence intervals [CIs]) was performed to examine the associations of density measures with breast cancer by adjusting for age and body mass index. Results Evaluated were 437 women diagnosed with breast cancer (median age, 62 years ± 17 [standard deviation]) and 1225 matched control patients (median age, 61 years ± 16). LIBRA PD showed strong correlations with Cumulus PD (r = 0.77-0.84) and Volpara VPD (r = 0.85-0.90) (P < .001 for both). For LIBRA, the strongest breast cancer association was observed for PD from processed images (OR, 1.3; 95% CI: 1.1, 1.5), although the PD association from raw images was not significantly different (OR, 1.2; 95% CI: 1.1, 1.4; P = .25). Slightly stronger breast cancer associations were seen for Cumulus PD (OR, 1.5; 95% CI: 1.3, 1.8; processed images; P = .01) and Volpara VPD (OR, 1.4; 95% CI: 1.2, 1.7; raw images; P = .004) compared with LIBRA measures. Conclusion Automated density measures provided by the Laboratory for Individualized Breast Radiodensity Assessment from raw and processed mammograms correlated with established area and volumetric density measures and showed comparable breast cancer associations. © RSNA, 2020 Online supplemental material is available for this article.


Assuntos
Densidade da Mama , Neoplasias da Mama/diagnóstico por imagem , Mamografia/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Idoso , Mama/diagnóstico por imagem , Estudos de Casos e Controles , Feminino , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Software
15.
J Magn Reson Imaging ; 51(1): 43-61, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31004391

RESUMO

The degree of normal fibroglandular tissue that enhances on breast MRI, known as background parenchymal enhancement (BPE), was initially described as an incidental finding that could affect interpretation performance. While BPE is now established to be a physiologic phenomenon that is affected by both endogenous and exogenous hormone levels, evidence supporting the notion that BPE frequently masks breast cancers is limited. However, compelling data have emerged to suggest BPE is an independent marker of breast cancer risk and breast cancer treatment outcomes. Specifically, multiple studies have shown that elevated BPE levels, measured qualitatively or quantitatively, are associated with a greater risk of developing breast cancer. Evidence also suggests that BPE could be a predictor of neoadjuvant breast cancer treatment response and overall breast cancer treatment outcomes. These discoveries come at a time when breast cancer screening and treatment have moved toward an increased emphasis on targeted and individualized approaches, of which the identification of imaging features that can predict cancer diagnosis and treatment response is an increasingly recognized component. Historically, researchers have primarily studied quantitative tumor imaging features in pursuit of clinically useful biomarkers. However, the need to segment less well-defined areas of normal tissue for quantitative BPE measurements presents its own unique challenges. Furthermore, there is no consensus on the optimal timing on dynamic contrast-enhanced MRI for BPE quantitation. This article comprehensively reviews BPE with a particular focus on its potential to increase precision approaches to breast cancer risk assessment, diagnosis, and treatment. It also describes areas of needed future research, such as the applicability of BPE to women at average risk, the biological underpinnings of BPE, and the standardization of BPE characterization. Level of Evidence: 3 Technical Efficacy Stage: 5 J. Magn. Reson. Imaging 2020;51:43-61.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Mama/diagnóstico por imagem , Feminino , Humanos
16.
Radiology ; 291(2): 320-327, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30888933

RESUMO

Background Breast Imaging Reporting and Data System (BI-RADS) breast density categories assigned by interpreting radiologists often influence decisions surrounding supplemental breast cancer screening and risk assessment. The landscape of mammographic screening continuously evolves, and different mammographic screening modalities may result in different perception of density, reflected in different assignment of BI-RADS density categories. Purpose To investigate the effect of screening mammography modality on BI-RADS breast density assessments. Materials and Methods Data were retrospectively analyzed from 24 736 individual women (42.3% [10 455 of 24 736] white women, 57.7% [14 281 of 24 736] black women; mean age, 56.3 years; age range, 40.0-74.9 years) who underwent from one to seven mammographic screening examinations from September 2010 through February 2017 (60 766 examinations). Three screening modalities were used: digital mammography alone (8935 examinations); digital mammography with digital breast tomosynthesis (DBT; 30 779 examinations); and synthetic mammography with DBT (21 052 examinations). Random-effects logistic regression analysis was performed to estimate the likelihood of assignment to high versus low BI-RADS density category according to each modality, adjusted for ethnicity, age, body mass index (BMI), and radiologist. The interactions of modality with ethnicity and BMI on density categorization were also tested with the model. Results Women screened with DBT versus digital mammography alone had lower likelihood regarding categorization of high density breasts (digital mammography and DBT vs digital mammography: odds ratio, 0.69 [95% confidence interval: 0.61, 0.80], P < .001; synthetic mammography and DBT vs digital mammography: odds ratio, 0.43 [95% confidence interval: 0.37, 0.50], P < .001). Lower likelihood of high density was also observed at synthetic mammography and DBT compared with digital mammography and DBT (odds ratio, 0.62; 95% confidence interval: 0.56, 0.69; P < .001). There were interactions of modality with ethnicity (P = .007) and BMI (P = .003) on breast density assessment, with greater differences in density categorization according to modality observed for black women than for white women and groups with higher BMI. Conclusion Breast density categorization may vary by screening mammographic modality, and this effect appears to vary by ethnicity and body mass index. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Philpotts in this issue.


Assuntos
Densidade da Mama/fisiologia , Neoplasias da Mama , Mama , Mamografia , Adulto , Idoso , Mama/diagnóstico por imagem , Mama/patologia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/patologia , Feminino , Humanos , Mamografia/métodos , Mamografia/estatística & dados numéricos , Pessoa de Meia-Idade , Estudos Retrospectivos
17.
Radiology ; 290(1): 41-49, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30375931

RESUMO

Purpose To identify phenotypes of mammographic parenchymal complexity by using radiomic features and to evaluate their associations with breast density and other breast cancer risk factors. Materials and Methods Computerized image analysis was used to quantify breast density and extract parenchymal texture features in a cross-sectional sample of women screened with digital mammography from September 1, 2012, to February 28, 2013 (n = 2029; age range, 35-75 years; mean age, 55.9 years). Unsupervised clustering was applied to identify and reproduce phenotypes of parenchymal complexity in separate training (n = 1339) and test sets (n = 690). Differences across phenotypes by age, body mass index, breast density, and estimated breast cancer risk were assessed by using Fisher exact, χ2, and Kruskal-Wallis tests. Conditional logistic regression was used to evaluate preliminary associations between the detected phenotypes and breast cancer in an independent case-control sample (76 women diagnosed with breast cancer and 158 control participants) matched on age. Results Unsupervised clustering in the screening sample identified four phenotypes with increasing parenchymal complexity that were reproducible between training and test sets (P = .001). Breast density was not strongly correlated with phenotype category (R2 = 0.24 for linear trend). The low- to intermediate-complexity phenotype (prevalence, 390 of 2029 [19%]) had the lowest proportion of dense breasts (eight of 390 [2.1%]), whereas similar proportions were observed across other phenotypes (from 140 of 291 [48.1%] in the high-complexity phenotype to 275 of 511 [53.8%] in the low-complexity phenotype). In the independent case-control sample, phenotypes showed a significant association with breast cancer (P = .001), resulting in higher discriminatory capacity when added to a model with breast density and body mass index (area under the curve, 0.84 vs 0.80; P = .03 for comparison). Conclusion Radiomic phenotypes capture mammographic parenchymal complexity beyond conventional breast density measures and established breast cancer risk factors. © RSNA, 2018 Online supplemental material is available for this article. See also the editorial by Pinker in this issue.


Assuntos
Densidade da Mama/fisiologia , Neoplasias da Mama/diagnóstico por imagem , Mama/diagnóstico por imagem , Mamografia/métodos , Adulto , Idoso , Estudos de Casos e Controles , Análise por Conglomerados , Detecção Precoce de Câncer , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Pessoa de Meia-Idade , Fenótipo , Fatores de Risco
18.
J Magn Reson Imaging ; 49(4): 927-938, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30390383

RESUMO

Breast cancer is a known heterogeneous disease. Current clinically utilized histopathologic biomarkers may undersample tumor heterogeneity, resulting in higher rates of misdiagnosis for breast cancer. MRI can provide a whole-tumor sampling of disease burden and is widely utilized in clinical care. Texture analysis can provide a localized description of breast cancer, with particular emphasis on quantifying breast lesion heterogeneity. The object of this review is to provide an overview of texture analysis applications towards breast cancer diagnosis, prognosis, and treatment response evaluation and review the role of image-based texture features as noninvasive prognostic and predictive biomarkers. Level of Evidence: 5 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:927-938.


Assuntos
Biomarcadores/metabolismo , Neoplasias da Mama/diagnóstico por imagem , Mama/diagnóstico por imagem , Imageamento por Ressonância Magnética , Feminino , Humanos , Aumento da Imagem , Interpretação de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador , Modelos Estatísticos , Reconhecimento Automatizado de Padrão , Prognóstico
20.
Breast Cancer Res Treat ; 162(3): 419-425, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28160159

RESUMO

BACKGROUND: Observational and biologic studies suggest that aspirin is a promising prevention therapy for breast cancer. However, clinical trials to date have not corroborated this evidence, potentially due to study design. We evaluated the effect of aspirin on mammographic density (MD), an established modifiable risk factor for breast cancer. METHODS: Electronic medical records from the University of Pennsylvania were evaluated for women who underwent screening mammography, saw their primary care provider, and had a confirmed list of medications during 2012-2013. Logistic regression was performed to test for associations between clinically recorded MD and aspirin use, after adjusting for age, body mass index (BMI), and ethnicity. RESULTS: We identified 26,000 eligible women. Mean age was 57.3, mean BMI was 28.9 kg/m2, 41% were African American, and 19.7% reported current aspirin use. Aspirin users were significantly older and had higher BMI. There was an independent, inverse association between aspirin use and MD (P trend < 0.001). Women with extremely dense breasts were less likely to be aspirin users than women with scattered fibroglandular density (OR 0.73; 95% CI 0.57-0.93). This association was stronger for younger women (P = 0.0002) and for African Americans (P = 0.011). The likelihood of having dense breasts decreased with aspirin dose (P trend = 0.007), suggesting a dose response. CONCLUSIONS: We demonstrate an independent association between aspirin use and lower MD in a large, diverse screening cohort. This association was stronger for younger and African American women: two groups at greater risk for ER- breast cancer. These results contribute to the importance of investigating aspirin for breast cancer prevention.


Assuntos
Aspirina/administração & dosagem , Densidade da Mama/efeitos dos fármacos , Neoplasias da Mama/epidemiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/etiologia , Neoplasias da Mama/prevenção & controle , Relação Dose-Resposta a Droga , Detecção Precoce de Câncer , Etnicidade , Feminino , Humanos , Mamografia , Pessoa de Meia-Idade , Razão de Chances , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA