Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Infect Dis ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38798080

RESUMO

BACKGROUND: Recently, face mask sampling (FMS) confirmed detection of Mycobacterium tuberculosis DNA from exhaled breath in adults with TB. To date, no study has evaluated the use of FMS to detect pulmonary Tuberculosis (TB) in children. We developed a method for FMS of M. tuberculosis-specific DNA in children and performed a clinical exploration to assess feasibility in children. METHODS: Face masks were spiked, analysed on GeneXpert-Ultra, qPCR, and tNGS. Children with pulmonary TB were asked to wear three modified FFP2 masks for 30 minutes as part of an exploratory clinical study. RESULTS: Experiments with H37Ra M. tuberculosis strain showed a limit of 95% detection of 3.75 CFU (4.85-3.11; 95%CI) on GeneXpert-Ultra. Ten children with pulmonary TB participated in the clinical study. M. tuberculosis-specific DNA was detected on none of the face masks. CONCLUSIONS: Paediatric FMS has a low limit of detection for M. tuberculosis-specific DNA in vitro. However, M. tuberculosis DNA was not detected in any of thirty masks worn by children with pulmonary TB. This suggests that FMS in this form may not be more effective for detecting M. tuberculosis in children with TB than existing methods.

2.
Clin Microbiol Rev ; 35(3): e0022721, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-35311552

RESUMO

Despite the advent of new diagnostics, drugs and regimens, tuberculosis (TB) remains a global public health threat. A significant challenge for TB control efforts has been the monitoring of TB therapy and determination of TB treatment success. Current recommendations for TB treatment monitoring rely on sputum and culture conversion, which have low sensitivity and long turnaround times, present biohazard risk, and are prone to contamination, undermining their usefulness as clinical treatment monitoring tools and for drug development. We review the pipeline of molecular technologies and assays that serve as suitable substitutes for current culture-based readouts for treatment response and outcome with the potential to change TB therapy monitoring and accelerate drug development.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Antituberculosos/uso terapêutico , Substâncias Perigosas , Humanos , Mycobacterium tuberculosis/genética , Resultado do Tratamento , Tuberculose/diagnóstico , Tuberculose/tratamento farmacológico
3.
Eur Respir J ; 58(3)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33574078

RESUMO

BACKGROUND: The World Health Organization recommends standardised treatment durations for patients with tuberculosis (TB). We identified and validated a host-RNA signature as a biomarker for individualised therapy durations for patients with drug-susceptible (DS)- and multidrug-resistant (MDR)-TB. METHODS: Adult patients with pulmonary TB were prospectively enrolled into five independent cohorts in Germany and Romania. Clinical and microbiological data and whole blood for RNA transcriptomic analysis were collected at pre-defined time points throughout therapy. Treatment outcomes were ascertained by TBnet criteria (6-month culture status/1-year follow-up). A whole-blood RNA therapy-end model was developed in a multistep process involving a machine-learning algorithm to identify hypothetical individual end-of-treatment time points. RESULTS: 50 patients with DS-TB and 30 patients with MDR-TB were recruited in the German identification cohorts (DS-GIC and MDR-GIC, respectively); 28 patients with DS-TB and 32 patients with MDR-TB in the German validation cohorts (DS-GVC and MDR-GVC, respectively); and 52 patients with MDR-TB in the Romanian validation cohort (MDR-RVC). A 22-gene RNA model (TB22) that defined cure-associated end-of-therapy time points was derived from the DS- and MDR-GIC data. The TB22 model was superior to other published signatures to accurately predict clinical outcomes for patients in the DS-GVC (area under the curve 0.94, 95% CI 0.9-0.98) and suggests that cure may be achieved with shorter treatment durations for TB patients in the MDR-GIC (mean reduction 218.0 days, 34.2%; p<0.001), the MDR-GVC (mean reduction 211.0 days, 32.9%; p<0.001) and the MDR-RVC (mean reduction of 161.0 days, 23.4%; p=0.001). CONCLUSION: Biomarker-guided management may substantially shorten the duration of therapy for many patients with MDR-TB.


Assuntos
Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose Pulmonar , Adulto , Antituberculosos/uso terapêutico , Duração da Terapia , Humanos , Transcriptoma , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Pulmonar/tratamento farmacológico
4.
Eur J Clin Microbiol Infect Dis ; 39(3): 415-426, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31667670

RESUMO

Several rapid non-commercial culture-based methods and assays for drug susceptibility testing (DST) of Mycobacterium tuberculosis have emerged over the last decades. The aim of the current review was to summarise evidence on the performance of microscopic observation of drug susceptibility (MODS), thin-layer agar (TLA) and colorimetric redox-indicator (CRI) assays for detection of resistance to first- and second-line anti-tuberculosis (TB) drugs. Forty-three publications satisfying selection criteria were selected for data extraction. MODS and CRI assays demonstrated pooled sensitivity and specificity of > 93% for the detection of resistance to rifampicin and isoniazid and confirmed their utility for an accurate detection of multidrug-resistant TB (MDR-TB) in various settings. Sensitivity and specificity values for indirect DST for ethambutol (EMB) using CRI assays were 94.0% and 82.0%, respectively, suggesting that CRIs could be used to rule out resistance to EMB. Performance for other drugs varied more substantially across the reports. There was no sufficient evidence on the performance of the TLA assay for making any conclusion on its utility for DST. Our data suggests that non-commercial assays could be used for a rapid and accurate DST in settings where the use of commercial World Health Organization-endorsed assays could be limited due to a variety of reasons including limited resources, laboratory facilities or trained personnel. While inexpensive and easy-to-perform MODS and TLA assays can be used in low-income settings, using CRI assays for determination of minimal inhibitory concentrations may be implemented in middle- and high-income countries with high MDR-TB burden to guide clinical management of TB patients.


Assuntos
Antituberculosos/farmacologia , Testes de Sensibilidade Microbiana/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Antituberculosos/uso terapêutico , Humanos , Testes de Sensibilidade Microbiana/normas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
5.
Genome Res ; 22(4): 735-45, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22294518

RESUMO

Extensively drug-resistant (XDR) tuberculosis (TB), which is resistant to both first- and second-line antibiotics, is an escalating problem, particularly in the Russian Federation. Molecular fingerprinting of 2348 Mycobacterium tuberculosis isolates collected in Samara Oblast, Russia, revealed that 72% belonged to the Beijing lineage, a genotype associated with enhanced acquisition of drug resistance and increased virulence. Whole-genome sequencing of 34 Samaran isolates, plus 25 isolates representing global M. tuberculosis complex diversity, revealed that Beijing isolates originating in Eastern Europe formed a monophyletic group. Homoplasic polymorphisms within this clade were almost invariably associated with antibiotic resistance, indicating that the evolution of this population is primarily driven by drug therapy. Resistance genotypes showed a strong correlation with drug susceptibility phenotypes. A novel homoplasic mutation in rpoC, found only in isolates carrying a common rpoB rifampicin-resistance mutation, may play a role in fitness compensation. Most multidrug-resistant (MDR) isolates also had mutations in the promoter of a virulence gene, eis, which increase its expression and confer kanamycin resistance. Kanamycin therapy may thus select for mutants with increased virulence, helping preserve bacterial fitness and promoting transmission of drug-resistant TB strains. The East European clade was dominated by two MDR clusters, each disseminated across Samara. Polymorphisms conferring fluoroquinolone resistance were independently acquired multiple times within each cluster, indicating that XDR TB is currently not widely transmitted.


Assuntos
Evolução Molecular , Tuberculose Extensivamente Resistente a Medicamentos/microbiologia , Genoma Bacteriano/genética , Mycobacterium tuberculosis/genética , Proteínas de Bactérias/genética , Impressões Digitais de DNA , DNA Bacteriano/química , DNA Bacteriano/genética , Resistência a Múltiplos Medicamentos/genética , Genótipo , Geografia , Humanos , Testes de Sensibilidade Microbiana , Modelos Genéticos , Mutação , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/patogenicidade , Filogenia , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas/genética , Federação Russa , Análise de Sequência de DNA , Especificidade da Espécie , Virulência/genética
6.
J Clin Microbiol ; 52(1): 164-72, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24172154

RESUMO

Mycobacterium tuberculosis Beijing strains represent targets of special importance for molecular surveillance of tuberculosis (TB), especially because they are associated with spread of multidrug resistance in some world regions. Standard 24-locus mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) typing lacks resolution power for accurately discriminating closely related clones that often compose Beijing strain populations. Therefore, we evaluated a set of 7 additional, hypervariable MIRU-VNTR loci for better resolution and tracing of such strains, using a collection of 535 Beijing isolates from six world regions where these strains are known to be prevalent. The typeability and interlaboratory reproducibility of these hypervariable loci were lower than those of the 24 standard loci. Three loci (2163a, 3155, and 3336) were excluded because of their redundant variability and/or more frequent noninterpretable results compared to the 4 other markers. The use of the remaining 4-locus set (1982, 3232, 3820, and 4120) increased the number of types by 52% (from 223 to 340) and reduced the clustering rate from 58.3 to 36.6%, when combined with the use of the standard 24-locus set. Known major clonal complexes/24-locus-based clusters were all subdivided, although the degree of subdivision varied depending on the complex. Only five single-locus variations were detected among the hypervariable loci of an additional panel of 92 isolates, representing 15 years of clonal spread of a single Beijing strain in a geographically restricted setting. On this calibrated basis, we propose this 4-locus set as a consensus for subtyping Beijing clonal complexes and clusters, after standard typing.


Assuntos
Repetições Minissatélites , Tipagem Molecular/métodos , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/genética , Tuberculose/microbiologia , Humanos , Epidemiologia Molecular/métodos , Tuberculose/epidemiologia
7.
PLOS Glob Public Health ; 4(10): e0003655, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39401209

RESUMO

The Purified Protein Derivative tuberculin skin tests (TST) and blood-based Mycobacterium tuberculosis (M.tb) specific interferon-gamma release assays (IGRA) are the currently used tests for identifying individuals with TB infection for preventive treatment. However, challenges around access and implementation have limited their use. Novel M.tb specific skin tests (TBST) such as Diaskintest, ESAT6-CFP10 (C-TST), C-Tb (also known as Cy-Tb), and DPPD may provide accurate and scalable options but evidence synthesis on their economic impact is lacking. We conducted two separate systematic reviews to compare the costs and cost-effectiveness of (1) the novel skin tests TBST (primary), and (2) TST and IGRA tests (secondary), to support WHO guideline development. We searched for articles presenting economic evaluations of the diagnostic tests using a health provider perspective and related to TB infection in humans. We considered papers written in English, Chinese or Russian. In the primary review, eight studies for novel TBST were found. One study in Brazil assessed cost-effectiveness of C-TST and Diaskintest and seven in Russia assessed the Diaskintest, while none evaluated C-Tb or DPPD. The review showed on average, Diaskintest kit costs (in 2021 USD) $1.60 (1.50 - 1.70), while full unit costs were estimated at $5.07. C-TST unit cost was $9.96. The second review found 32 articles on IGRA and/or the TST. These presented an average TST full unit cost of $37.88, and $87.81 for IGRA. Studies' quality for TBST was limited while high-quality studies were found for TST and IGRA tests. In conclusion, there is limited evidence regarding the costs and cost-effectiveness of novel TBST. Conversely, there is substantial evidence for TST and IGRA tests, but most studies were performed in high-income and low-TB burden settings and their cost-effectiveness varied between and within risk groups without clear economic consensus.

8.
Lancet Microbe ; 5(9): 100869, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38735303

RESUMO

Drug development for tuberculosis is hindered by the methodological limitations in the definitions of patient outcomes, particularly the slow organism growth and difficulty in obtaining suitable and representative samples throughout the treatment. We developed target product profiles for biomarker assays suitable for early-phase and late-phase clinical drug trials by consulting subject-matter experts on the desirable performance and operational characteristics of such assays for monitoring of tuberculosis treatment in drug trials. Minimal and optimal criteria were defined for scope, intended use, pricing, performance, and operational characteristics of the biomarkers. Early-stage trial assays should accurately quantify the number of viable bacilli, whereas late-stage trial assays should match the number, predict relapse-free cure, and replace culture conversion endpoints. The operational criteria reflect the infrastructure and resources available for drug trials. The effective tools should define the sterilising activity of the drug and lower the probability of treatment failure or relapse in people with tuberculosis. The target product profiles outlined in this Review should guide and de-risk the development of biomarker-based assays suitable for phase 2 and 3 clinical drug trials.


Assuntos
Antituberculosos , Biomarcadores , Desenvolvimento de Medicamentos , Tuberculose , Humanos , Antituberculosos/uso terapêutico , Antituberculosos/farmacologia , Desenvolvimento de Medicamentos/métodos , Biomarcadores/análise , Tuberculose/tratamento farmacológico , Tuberculose/diagnóstico , Tuberculose/microbiologia , Mycobacterium tuberculosis/efeitos dos fármacos , Ensaios Clínicos como Assunto/métodos
9.
Nat Med ; 30(3): 896-904, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38365949

RESUMO

New tuberculosis treatments are needed to address drug resistance, lengthy treatment duration and adverse reactions of available agents. GSK3036656 (ganfeborole) is a first-in-class benzoxaborole inhibiting the Mycobacterium tuberculosis leucyl-tRNA synthetase. Here, in this phase 2a, single-center, open-label, randomized trial, we assessed early bactericidal activity (primary objective) and safety and pharmacokinetics (secondary objectives) of ganfeborole in participants with untreated, rifampicin-susceptible pulmonary tuberculosis. Overall, 75 males were treated with ganfeborole (1/5/15/30 mg) or standard of care (Rifafour e-275 or generic alternative) once daily for 14 days. We observed numerical reductions in daily sputum-derived colony-forming units from baseline in participants receiving 5, 15 and 30 mg once daily but not those receiving 1 mg ganfeborole. Adverse event rates were comparable across groups; all events were grade 1 or 2. In a participant subset, post hoc exploratory computational analysis of 18F-fluorodeoxyglucose positron emission tomography/computed tomography findings showed measurable treatment responses across several lesion types in those receiving ganfeborole 30 mg at day 14. Analysis of whole-blood transcriptional treatment response to ganfeborole 30 mg at day 14 revealed a strong association with neutrophil-dominated transcriptional modules. The demonstrated bactericidal activity and acceptable safety profile suggest that ganfeborole is a potential candidate for combination treatment of pulmonary tuberculosis.ClinicalTrials.gov identifier: NCT03557281 .


Assuntos
Aminoacil-tRNA Sintetases , Tuberculose Pulmonar , Tuberculose , Masculino , Humanos , Rifampina/uso terapêutico , Antituberculosos/efeitos adversos , Tuberculose/tratamento farmacológico , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/microbiologia , Aminoacil-tRNA Sintetases/uso terapêutico
10.
BMC Med ; 11: 190, 2013 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-23987891

RESUMO

In this article, we give an overview of new technologies for the diagnosis of tuberculosis (TB) and drug resistance, consider their advantages over existing methodologies, broad issues of cost, cost-effectiveness and programmatic implementation, and their clinical as well as public health impact, focusing on the industrialized world. Molecular nucleic-acid amplification diagnostic systems have high specificity for TB diagnosis (and rifampicin resistance) but sensitivity for TB detection is more variable. Nevertheless, it is possible to diagnose TB and rifampicin resistance within a day and commercial automated systems make this possible with minimal training. Although studies are limited, these systems appear to be cost-effective. Most of these tools are of value clinically and for public health use. For example, whole genome sequencing of Mycobacterium tuberculosis offers a powerful new approach to the identification of drug resistance and to map transmission at a community and population level.


Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/estatística & dados numéricos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Genoma Bacteriano , Humanos , Análise de Sequência de DNA/métodos
11.
J Clin Microbiol ; 51(1): 243-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23152552

RESUMO

The Russian Federation is a high-tuberculosis (TB)-burden country with high rates of Mycobacterium tuberculosis multidrug resistance (MDR) and extensive drug resistance (XDR), especially in HIV-coinfected patients. Rapid and reliable diagnosis for detection of resistance to second-line drugs is vital for adequate patient management. We evaluated the performance of the GenoType MTBDRsl (Hain Lifescience GmbH, Nehren, Germany) assay on smear-positive sputum specimens obtained from 90 HIV-infected MDR TB patients from Russia. Test interpretability was over 98%. Specificity was over 86% for all drugs, while sensitivity varied, being the highest (71.4%) for capreomycin and lowest (9.4%) for kanamycin, probably due to the presence of mutations in the eis gene. The sensitivity of detection of XDR TB was 13.6%, increasing to 42.9% if kanamycin (not commonly used in Western Europe) was excluded. The assay is a highly specific screening tool for XDR detection in direct specimens from HIV-coinfected TB patients but cannot be used to rule out XDR TB.


Assuntos
Técnicas Bacteriológicas/métodos , Farmacorresistência Bacteriana Múltipla , Tuberculose Extensivamente Resistente a Medicamentos/diagnóstico , Infecções por HIV/complicações , Técnicas de Diagnóstico Molecular/métodos , Mycobacterium tuberculosis/isolamento & purificação , Adulto , Tuberculose Extensivamente Resistente a Medicamentos/microbiologia , Feminino , Genótipo , Humanos , Masculino , Programas de Rastreamento/métodos , Mycobacterium tuberculosis/genética , Sensibilidade e Especificidade
13.
Microbiol Spectr ; 11(6): e0234823, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37882572

RESUMO

IMPORTANCE: This study presents the results of the evaluation of a novel method for the detection of Mycobacterium tuberculosis, the causative agent of tuberculosis, in urine. Detecting parts of the mycobacteria in urine is of particular interest as it allows us to use a sample that is easy to obtain and that does not require uncomfortable procedures or safety precautions like obtaining sputum for culture, which is the most commonly used sample in the diagnosis of tuberculosis. In certain groups of individuals who cannot produce sputum, for example, children, non-sputum-based methods have particular importance. We found that the method tested was able to detect bacterial killing by active antibiotics that disrupt the cell wall and lead to fragmentation of bacteria. However, the assay can't detect inactive bacteria or bacteria that are active with an intact cell wall.


Assuntos
Líquidos Corporais , Mycobacterium tuberculosis , Tuberculose Pulmonar , Tuberculose , Criança , Humanos , Mycobacterium tuberculosis/genética , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/microbiologia , Tuberculose/diagnóstico , DNA
14.
Artigo em Inglês | MEDLINE | ID: mdl-37490968

RESUMO

BACKGROUND: Tuberculosis (TB) remains a global public health threat, and the development of rapid and precise diagnostic tools is the key to enabling the early start of treatment, monitoring response to treatment, and preventing the spread of the disease. OBJECTIVES: An overview of recent progress in host- and pathogen-based TB diagnostics. SOURCES: We conducted a PubMed search of recent relevant articles and guidelines on TB screening and diagnosis. CONTENT: An overview of currently used methods and perspectives in the following areas of TB diagnostics is provided: immune-based diagnostics, X-ray, clinical symptoms and scores, cough detection, culture of Mycobacterium tuberculosis and identifying its resistance profile using phenotypic and genotypic methods, including next-generation sequencing, sputum- and non-sputum-based molecular diagnosis of TB and monitoring of response to treatment. IMPLICATIONS: A brief overview of the most relevant advances and changes in international guidelines regarding screening and diagnosing TB is provided in this review. It aims at reviewing all relevant areas of diagnostics, including both pathogen- and host-based methods.

15.
Open Forum Infect Dis ; 10(5): ofad228, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37234516

RESUMO

Background: A systematic review showed that the accuracy of Mycobacterium tuberculosis antigen-based skin tests (TBSTs) for tuberculosis is similar to that of interferon γ release assay, but the safety of TBSTs has not been systematically reviewed. Methods: We searched for studies reporting injection site reactions (ISRs) and systemic adverse events associated with TBSTs. We searched Medline, Embase, e-library, the Chinese Biomedical Literature Database, and the China National Knowledge Infrastructure database for studies through 30 July 2021, and the database search was updated until 22 November 2022. Results: We identified 7 studies for Cy-Tb (Serum Institute of India), 7 (including 2 found through the updated search) for C-TST (Anhui Zhifei Longcom), and 11 for Diaskintest (Generium). The pooled risk of any injection site reactions (ISRs) due to Cy-Tb (n = 2931; 5 studies) did not differ significantly from that for tuberculin skin tests (TSTs; risk ratio, 1.05 [95% confidence interval, .70-1.58]). More than 95% of ISRs were reported as mild or moderate; common ISRs included pain, itching, and rash. In 1 randomized controlled study, 49 of 153 participants (37.6%) given Cy-Tb experience any systemic adverse event (eg, fever and headache), compared with 56 of 149 participants (37.6%) given TST (risk ratio, 0.85 [95% confidence interval, .6-1.2]). In a randomized controlled study in China (n = 14 579), the frequency of systemic adverse events in participants given C-TST was similar to that for TST, and the frequency of ISRs was similar to or lower than that for TST. Reporting of the safety data on Diaskintest was not standardized, precluding meta-analysis. Conclusion: The safety profile of TBSTs appears similar to that of TSTs and is associated with mostly mild ISRs.

16.
Lancet Infect Dis ; 23(4): e122-e137, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36868253

RESUMO

Drug-resistant tuberculosis is a substantial health-care concern worldwide. Despite culture-based methods being considered the gold standard for drug susceptibility testing, molecular methods provide rapid information about the Mycobacterium tuberculosis mutations associated with resistance to anti-tuberculosis drugs. This consensus document was developed on the basis of a comprehensive literature search, by the TBnet and RESIST-TB networks, about reporting standards for the clinical use of molecular drug susceptibility testing. Review and the search for evidence included hand-searching journals and searching electronic databases. The panel identified studies that linked mutations in genomic regions of M tuberculosis with treatment outcome data. Implementation of molecular testing for the prediction of drug resistance in M tuberculosis is key. Detection of mutations in clinical isolates has implications for the clinical management of patients with multidrug-resistant or rifampicin-resistant tuberculosis, especially in situations when phenotypic drug susceptibility testing is not available. A multidisciplinary team including clinicians, microbiologists, and laboratory scientists reached a consensus on key questions relevant to molecular prediction of drug susceptibility or resistance to M tuberculosis, and their implications for clinical practice. This consensus document should help clinicians in the management of patients with tuberculosis, providing guidance for the design of treatment regimens and optimising outcomes.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Testes de Sensibilidade Microbiana , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose/tratamento farmacológico , Mutação
17.
J Clin Microbiol ; 50(5): 1593-7, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22378910

RESUMO

The rate of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB) has been steadily increasing in countries of the former USSR. The availability of rapid and reliable methods for the detection of drug resistance to second-line drugs is vital for adequate patient management. We evaluated the performance of the Genotype MTBDRsl assay compared to that of phenotypic drug susceptibility testing (Becton Dickinson Bactec MGIT 960 system) with a test panel of 200 Mycobacterium tuberculosis isolates at four sites in Eastern Europe. The interpretability of the Genotype MTBDRsl assay was over 95%. The sensitivity for the detection of resistance to fluoroquinolones, ethambutol, amikacin, and capreomycin varied between 77.3% and 92.3%; however, it was much lower for kanamycin (42.7%). The sensitivity for the detection of XDR TB was 22.6%. The test specificity was over 82% for all drugs. The assay presents a good screening tool for the rapid detection of resistance to individual second-line drugs and can be recommended for use in countries with a high burden of MDR/XDR TB. The sensitivity for the detection of kanamycin resistance needs improvement.


Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana , Tipagem Molecular/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Europa Oriental , Genótipo , Humanos , Testes de Sensibilidade Microbiana/métodos , Mycobacterium tuberculosis/genética , Fenótipo , Sensibilidade e Especificidade
18.
J Infect Public Health ; 14(2): 263-270, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33497876

RESUMO

BACKGROUND: Piacenza is the closest city to the first coronavirus disease 2019 (COVID-19) cluster in Italy and has the highest national COVID-19 death rates per population. The objective of this study is to present characteristics and outcomes of patients admitted to medical departments of the Hospital of Piacenza during the first wave of the epidemic. METHODS: A total of 218 patients with confirmed or suspect COVID-19 and severe pneumonia were included from February 21st to May 15th, 2020. Routinely-collected clinical and laboratory data were retrospectively retrieved from electronic medical files. A Cox proportional-hazards model was fit to assess the association of treatment and other variables with death. RESULTS: Median age of patients was 68 years; 150 patients (69%) had comorbidities, mainly hypertension (107, 49%). Overall, 185 (85%) patients had acute respiratory distress syndrome (ARDS) on admission, including 103 (47%) with moderate or severe ARDS. Chest computed tomography scan showed bilateral disease in 201 (98%) and extensive lung involvement in 79 (50%) patients. Most patients received antiviral treatment (187, 86%) and corticosteroids (134, 61%). All patients received respiratory support and 64 (29%) were admitted to intensive care unit. As of June 30th, 100 patients (46%) died, 109 patients (50%) were discharged, and 9 patients (4%) were still hospitalized. In multivariable Cox analysis, age above 65 years, having more than one comorbidity, severe ARDS, low platelet counts, and high LDH levels at admission were associated with mortality, while having diarrhea at admission was associated with survival. The use of antivirals or corticosteroids was not associated with survival. CONCLUSIONS: Overall case fatality rates were high and associated with comorbidities, extensive lung involvement, ARDS at admission, and advanced age. The use of antivirals was not associated with increased survival.


Assuntos
COVID-19/epidemiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/fisiopatologia , Comorbidade , Feminino , Humanos , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Pandemias , Estudos Retrospectivos , Adulto Jovem
19.
Sci Rep ; 11(1): 20964, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34697322

RESUMO

Multicentre, retrospective cohort study with multivariable Cox proportional-hazards modelling and survival-time inverse-probability-weighting, evaluating the impact of different treatments on survival of proven COVID-19 patients admitted to two Hospitals in the province of Piacenza, Italy. Use of tocilizumab and of high doses of low molecular weight heparin, but not of antivirals (either alone or in combination), azithromycin, and any corticosteroid, was independently associated with lower mortality. Our results support further clinical evaluation of high doses of low molecular weight heparin and tocilizumab as COVID-19 therapeutics.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Antivirais/administração & dosagem , Tratamento Farmacológico da COVID-19 , COVID-19/epidemiologia , Heparina/administração & dosagem , Corticosteroides/administração & dosagem , Idoso , Azitromicina/administração & dosagem , Feminino , Mortalidade Hospitalar , Hospitalização , Humanos , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Admissão do Paciente , Probabilidade , Modelos de Riscos Proporcionais , Estudos Retrospectivos , SARS-CoV-2 , Resultado do Tratamento
20.
Eur Respir Rev ; 30(160)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34039674

RESUMO

Standardised management of tuberculosis may soon be replaced by individualised, precision medicine-guided therapies informed with knowledge provided by the field of systems biology. Systems biology is a rapidly expanding field of computational and mathematical analysis and modelling of complex biological systems that can provide insights into mechanisms underlying tuberculosis, identify novel biomarkers, and help to optimise prevention, diagnosis and treatment of disease. These advances are critically important in the context of the evolving epidemic of drug-resistant tuberculosis. Here, we review the available evidence on the role of systems biology approaches - human and mycobacterial genomics and transcriptomics, proteomics, lipidomics/metabolomics, immunophenotyping, systems pharmacology and gut microbiomes - in the management of tuberculosis including prediction of risk for disease progression, severity of mycobacterial virulence and drug resistance, adverse events, comorbidities, response to therapy and treatment outcomes. Application of the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach demonstrated that at present most of the studies provide "very low" certainty of evidence for answering clinically relevant questions. Further studies in large prospective cohorts of patients, including randomised clinical trials, are necessary to assess the applicability of the findings in tuberculosis prevention and more efficient clinical management of patients.


Assuntos
Biologia de Sistemas , Tuberculose , Genômica , Humanos , Metabolômica , Estudos Prospectivos , Tuberculose/diagnóstico , Tuberculose/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA