Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 382
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Pharmacol Toxicol ; 64: 255-275, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38261428

RESUMO

Alcohol use disorder (AUD) afflicts over 29 million individuals and causes more than 140,000 deaths annually in the United States. A heuristic framework for AUD includes a three-stage cycle-binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation-that provides a starting point for exploring the heterogeneity of AUD with regard to treatment. Effective behavioral health treatments and US Food and Drug Administration-approved medications are available but greatly underutilized, creating a major treatment gap. This review outlines challenges that face the alcohol field in closing this treatment gap and offers solutions, including broadening end points for the approval of medications for the treatment of AUD; increasing the uptake of screening, brief intervention, and referral to treatment; addressing stigma; implementing a heuristic definition of recovery; engaging early treatment; and educating health-care professionals and the public about challenges that are associated with alcohol misuse. Additionally, this review focuses on broadening potential targets for the development of medications for AUD by utilizing the three-stage heuristic model of addiction that outlines domains of dysfunction in AUD and the mediating neurobiology of AUD.


Assuntos
Alcoolismo , Comportamento Aditivo , Estados Unidos , Humanos , Etanol , Transporte Biológico , United States Food and Drug Administration
2.
Brain Behav Immun ; 119: 494-506, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38657842

RESUMO

Alcohol Use Disorder (AUD) is a persistent condition linked to neuroinflammation, neuronal oxidative stress, and neurodegenerative processes. While the inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) has demonstrated effectiveness in reducing liver inflammation associated with alcohol, its impact on the brain remains largely unexplored. This study aimed to assess the effects of alirocumab, a monoclonal antibody targeting PCSK9 to lower systemic low-density lipoprotein cholesterol (LDL-C), on central nervous system (CNS) pathology in a rat model of chronic alcohol exposure. Alirocumab (50 mg/kg) or vehicle was administered weekly for six weeks in 32 male rats subjected to a 35 % ethanol liquid diet or a control liquid diet (n = 8 per group). The study evaluated PCSK9 expression, LDL receptor (LDLR) expression, oxidative stress, and neuroinflammatory markers in brain tissues. Chronic ethanol exposure increased PCSK9 expression in the brain, while alirocumab treatment significantly upregulated neuronal LDLR and reduced oxidative stress in neurons and brain vasculature (3-NT, p22phox). Alirocumab also mitigated ethanol-induced microglia recruitment in the cortex and hippocampus (Iba1). Additionally, alirocumab decreased the expression of pro-inflammatory cytokines and chemokines (TNF, CCL2, CXCL3) in whole brain tissue and attenuated the upregulation of adhesion molecules in brain vasculature (ICAM1, VCAM1, eSelectin). This study presents novel evidence that alirocumab diminishes oxidative stress and modifies neuroimmune interactions in the brain elicited by chronic ethanol exposure. Further investigation is needed to elucidate the mechanisms by which PCSK9 signaling influences the brain in the context of chronic ethanol exposure.


Assuntos
Anticorpos Monoclonais Humanizados , Encéfalo , Etanol , Neurônios , Estresse Oxidativo , Inibidores de PCSK9 , Pró-Proteína Convertase 9 , Animais , Estresse Oxidativo/efeitos dos fármacos , Masculino , Ratos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Inibidores de PCSK9/farmacologia , Pró-Proteína Convertase 9/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Anticorpos Monoclonais Humanizados/farmacologia , Alcoolismo/metabolismo , Alcoolismo/tratamento farmacológico , Microglia/metabolismo , Microglia/efeitos dos fármacos , Receptores de LDL/metabolismo , Ratos Sprague-Dawley , Modelos Animais de Doenças
3.
Pharmacol Rev ; 73(1): 163-201, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33318153

RESUMO

Compulsive drug seeking that is associated with addiction is hypothesized to follow a heuristic framework that involves three stages (binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation) and three domains of dysfunction (incentive salience/pathologic habits, negative emotional states, and executive function, respectively) via changes in the basal ganglia, extended amygdala/habenula, and frontal cortex, respectively. This review focuses on neurochemical/neurocircuitry dysregulations that contribute to hyperkatifeia, defined as a greater intensity of negative emotional/motivational signs and symptoms during withdrawal from drugs of abuse in the withdrawal/negative affect stage of the addiction cycle. Hyperkatifeia provides an additional source of motivation for compulsive drug seeking via negative reinforcement. Negative reinforcement reflects an increase in the probability of a response to remove an aversive stimulus or drug seeking to remove hyperkatifeia that is augmented by genetic/epigenetic vulnerability, environmental trauma, and psychiatric comorbidity. Neurobiological targets for hyperkatifeia in addiction involve neurocircuitry of the extended amygdala and its connections via within-system neuroadaptations in dopamine, enkephalin/endorphin opioid peptide, and γ-aminobutyric acid/glutamate systems and between-system neuroadaptations in prostress corticotropin-releasing factor, norepinephrine, glucocorticoid, dynorphin, hypocretin, and neuroimmune systems and antistress neuropeptide Y, nociceptin, endocannabinoid, and oxytocin systems. Such neurochemical/neurocircuitry dysregulations are hypothesized to mediate a negative hedonic set point that gradually gains allostatic load and shifts from a homeostatic hedonic state to an allostatic hedonic state. Based on preclinical studies and translational studies to date, medications and behavioral therapies that reset brain stress, antistress, and emotional pain systems and return them to homeostasis would be promising new targets for medication development. SIGNIFICANCE STATEMENT: The focus of this review is on neurochemical/neurocircuitry dysregulations that contribute to hyperkatifeia, defined as a greater intensity of negative emotional/motivational signs and symptoms during withdrawal from drugs of abuse in the withdrawal/negative affect stage of the drug addiction cycle and a driving force for negative reinforcement in addiction. Medications and behavioral therapies that reverse hyperkatifeia by resetting brain stress, antistress, and emotional pain systems and returning them to homeostasis would be promising new targets for medication development.


Assuntos
Recompensa , Transtornos Relacionados ao Uso de Substâncias , Desenvolvimento de Medicamentos , Humanos , Motivação , Reforço Psicológico
4.
J Pharmacol Exp Ther ; 385(2): 117-134, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36828628

RESUMO

The opioid overdose death toll in the United States is an ongoing public health crisis. We characterized the magnitude and duration of respiratory depression, the leading cause of death in opioid overdose cases, induced by heroin or fentanyl and the development of tolerance in male and female rats. We used whole-body plethysmography to first establish dose-response curves by recording breathing for 60 minutes post-intravenous opioid injection. We then tested the development of respiratory tolerance to acute heroin or fentanyl over several weeks and to chronic fentanyl with acute fentanyl or heroin challenge. Heroin and fentanyl each provoked dose-dependent respiratory depression. Heroin caused prolonged (45-60 minute) respiratory depression in female and male rats, characterized by decreased frequency, tidal volume, and minute ventilation and increased inspiratory time and apneic pause. Fentanyl produced similar changes with a shorter duration (10-15 minutes). High-dose heroin or fentanyl produced robust respiratory depression that was slightly more severe in females and, when given intermittently (acute doses 2 to 3 weeks apart), did not lead to tolerance. In contrast, chronic fentanyl delivered with an osmotic minipump resulted in tolerance to acute fentanyl and heroin, characterized by a shorter duration of respiratory depression. This effect persisted during withdrawal in males only. Our model and experimental design will allow for investigation of the neurobiology of opioid-induced respiratory depression and for testing potential therapeutics to reverse respiratory depression or stimulate breathing. SIGNIFICANCE STATEMENT: Fentanyl was more potent and had shorter duration in producing respiratory depression than heroin in both sexes, whereas female rats were more sensitive than males to heroin-induced respiratory depression. Tolerance/cross-tolerance develops in chronic fentanyl administration but is minimized with long interadministration intervals.


Assuntos
Overdose de Opiáceos , Insuficiência Respiratória , Feminino , Ratos , Masculino , Animais , Heroína/efeitos adversos , Fentanila/efeitos adversos , Analgésicos Opioides/farmacologia , Caracteres Sexuais , Overdose de Opiáceos/tratamento farmacológico , Insuficiência Respiratória/induzido quimicamente , Insuficiência Respiratória/tratamento farmacológico , Pletismografia
5.
J Pharmacol Exp Ther ; 386(2): 117-128, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36631279

RESUMO

Preclinical and clinical studies have identified the ghrelin receptor [growth hormone secretagogue receptor (GHSR)1a] as a potential target for treating alcohol use disorder. A recent phase 1a clinical trial of a GHSR1a antagonist/inverse agonist, PF-5190457, in individuals with heavy alcohol drinking identified a previously undetected major hydroxy metabolite of PF-5190457, namely PF-6870961. Here, we further characterized PF-6870961 by screening for off-target interactions in a high-throughput screen and determined its in vitro pharmacodynamic profile at GHSR1a through binding and concentration-response assays. Moreover, we determined whether the metabolite demonstrated an in vivo effect by assessing effects on food intake in male and female rats. We found that PF-6870961 had no off-target interactions and demonstrated both binding affinity and inverse agonist activity at GHSR1a. In comparison with its parent compound, PF-5190457, the metabolite PF-6870961 had lower binding affinity and potency at inhibiting GHSR1a-induced inositol phosphate accumulation. However, PF-6870961 had increased inhibitory potency at GHSR1a-induced ß-arrestin recruitment relative to its parent compound. Intraperitoneal injection of PF-6870961 suppressed food intake under conditions of both food restriction and with ad libitum access to food in male and female rats, demonstrating in vivo activity. The effects of PF-6870961 on food intake were abolished in male and female rats knockout for GHSR, thus demonstrating that its effects on food intake are in fact mediated by the GHSR receptor. Our findings indicate that the newly discovered major hydroxy metabolite of PF-5190457 may contribute to the overall activity of PF-5190457 by demonstrating inhibitory activity at GHSR1a. SIGNIFICANCE STATEMENT: Antagonists or inverse agonists of the growth hormone secretagogue receptor (GHSR)1a have demonstrated substantial potential as therapeutics for alcohol use disorder. We here expand understanding of the pharmacology of one such GHSR1a inverse agonist, PF-5190457, by studying the safety and pharmacodynamics of its major hydroxy metabolite, PF-6870961. Our data demonstrate biased inverse agonism of PF-6870961 at GHSR1a and provide new structure-activity relationship insight into GHSR1a inverse agonism.


Assuntos
Alcoolismo , Ratos , Masculino , Feminino , Animais , Receptores de Grelina/metabolismo , Agonismo Inverso de Drogas
6.
Mol Psychiatry ; 27(11): 4642-4652, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36123420

RESUMO

Evidence suggests that spironolactone, a nonselective mineralocorticoid receptor (MR) antagonist, modulates alcohol seeking and consumption. Therefore, spironolactone may represent a novel pharmacotherapy for alcohol use disorder (AUD). In this study, we tested the effects of spironolactone in a mouse model of alcohol drinking (drinking-in-the-dark) and in a rat model of alcohol dependence (vapor exposure). We also investigated the association between spironolactone receipt for at least 60 continuous days and change in self-reported alcohol consumption, using the Alcohol Use Disorders Identification Test-Consumption (AUDIT-C), in a pharmacoepidemiologic cohort study in the largest integrated healthcare system in the US. Spironolactone dose-dependently reduced the intake of sweetened or unsweetened alcohol solutions in male and female mice. No effects of spironolactone were observed on drinking of a sweet solution without alcohol, food or water intake, motor coordination, alcohol-induced ataxia, or blood alcohol levels. Spironolactone dose-dependently reduced operant alcohol self-administration in dependent and nondependent male and female rats. In humans, a greater reduction in alcohol consumption was observed among those who received spironolactone, compared to propensity score-matched individuals who did not receive spironolactone. The largest effects were among those who reported hazardous/heavy episodic alcohol consumption at baseline (AUDIT-C ≥ 8) and those exposed to ≥ 50 mg/day of spironolactone. These convergent findings across rodent and human studies demonstrate that spironolactone reduces alcohol use and support the hypothesis that this medication may be further studied as a novel pharmacotherapy for AUD.


Assuntos
Alcoolismo , Humanos , Masculino , Feminino , Ratos , Animais , Camundongos , Alcoolismo/tratamento farmacológico , Espironolactona/uso terapêutico , Espironolactona/farmacologia , Roedores , Estudos de Coortes , Consumo de Bebidas Alcoólicas/tratamento farmacológico , Etanol
7.
Mol Psychiatry ; 27(5): 2492-2501, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35296810

RESUMO

The global crisis of opioid overdose fatalities has led to an urgent search to discover the neurobiological mechanisms of opioid use disorder (OUD). A driving force for OUD is the dysphoric and emotionally painful state (hyperkatifeia) that is produced during acute and protracted opioid withdrawal. Here, we explored a mechanistic role for extrahypothalamic stress systems in driving opioid addiction. We found that glucocorticoid receptor (GR) antagonism with mifepristone reduced opioid addiction-like behaviors in rats and zebrafish of both sexes and decreased the firing of corticotropin-releasing factor neurons in the rat amygdala (i.e., a marker of brain stress system activation). In support of the hypothesized role of glucocorticoid transcriptional regulation of extrahypothalamic GRs in addiction-like behavior, an intra-amygdala infusion of an antisense oligonucleotide that blocked GR transcriptional activity reduced addiction-like behaviors. Finally, we identified transcriptional adaptations of GR signaling in the amygdala of humans with OUD. Thus, GRs, their coregulators, and downstream systems may represent viable therapeutic targets to treat the "stress side" of OUD.


Assuntos
Transtornos Relacionados ao Uso de Opioides , Síndrome de Abstinência a Substâncias , Corticosteroides , Animais , Hormônio Liberador da Corticotropina , Ratos , Peixe-Zebra
8.
PLoS Biol ; 17(4): e2006421, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30990816

RESUMO

Oxytocin administration has been reported to decrease consumption, withdrawal, and drug-seeking associated with several drugs of abuse and thus represents a promising pharmacological approach to treat drug addiction. We used an established rat model of alcohol dependence to investigate oxytocin's effects on dependence-induced alcohol drinking, enhanced motivation for alcohol, and altered GABAergic transmission in the central nucleus of the amygdala (CeA). Intraperitoneal oxytocin administration blocked escalated alcohol drinking and the enhanced motivation for alcohol in alcohol-dependent but not nondependent rats. Intranasal oxytocin delivery fully replicated these effects. Intraperitoneal administration had minor but significant effects of reducing locomotion and intake of non-alcoholic palatable solutions, whereas intranasal oxytocin administration did not. In dependent rats, intracerebroventricular administration of oxytocin or the oxytocin receptor agonist PF-06655075, which does not cross the blood-brain barrier (i.e., it would not diffuse to the periphery), but not systemic administration of PF-06655075 (i.e., it would not reach the brain), decreased alcohol drinking. Administration of a peripherally restricted oxytocin receptor antagonist did not reverse the effect of intranasal oxytocin on alcohol drinking. Ex vivo electrophysiological recordings from CeA neurons indicated that oxytocin decreases evoked GABA transmission in nondependent but not in dependent rats, whereas oxytocin decreased the amplitude of spontaneous GABAergic responses in both groups. Oxytocin blocked the facilitatory effects of acute alcohol on GABA release in the CeA of dependent but not nondependent rats. Together, these results provide converging evidence that oxytocin specifically and selectively blocks the enhanced motivation for alcohol drinking that develops in alcohol dependence likely via a central mechanism that may result from altered oxytocin effects on CeA GABA transmission in alcohol dependence. Neuroadaptations in endogenous oxytocin signaling may provide a mechanism to further our understanding of alcohol use disorder.


Assuntos
Alcoolismo/tratamento farmacológico , Neurônios GABAérgicos/efeitos dos fármacos , Ocitocina/farmacologia , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Animais , Etanol/metabolismo , Etanol/farmacologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Injeções Intraperitoneais , Masculino , Motivação/efeitos dos fármacos , Neurônios/fisiologia , Ocitocina/metabolismo , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Transmissão Sináptica/fisiologia
9.
Cereb Cortex ; 31(7): 3254-3265, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33629726

RESUMO

Here we assessed changes in subcortical volumes in alcohol use disorder (AUD). A simple morphometry-based classifier (MC) was developed to identify subcortical volumes that distinguished 32 healthy controls (HCs) from 33 AUD patients, who were scanned twice, during early and later withdrawal, to assess the effect of abstinence on MC-features (Discovery cohort). We validated the novel classifier in an independent Validation cohort (19 AUD patients and 20 HCs). MC-accuracy reached 80% (Discovery) and 72% (Validation). MC features included the hippocampus, amygdala, cerebellum, putamen, corpus callosum, and brain stem, which were smaller and showed stronger age-related decreases in AUD than HCs, and the ventricles and cerebrospinal fluid, which were larger in AUD and older participants. The volume of the amygdala showed a positive association with anxiety and negative urgency in AUD. Repeated imaging during the third week of detoxification revealed slightly larger subcortical volumes in AUD patients, consistent with partial recovery during abstinence. The steeper age-associated volumetric reductions in stress- and reward-related subcortical regions in AUD are consistent with accelerated aging, whereas the amygdalar associations with negative urgency and anxiety in AUD patients support its involvement in the "dark side of addiction".


Assuntos
Envelhecimento/patologia , Alcoolismo/diagnóstico por imagem , Tonsila do Cerebelo/diagnóstico por imagem , Comportamento Aditivo/diagnóstico por imagem , Aprendizado de Máquina/tendências , Adulto , Envelhecimento/psicologia , Alcoolismo/psicologia , Comportamento Aditivo/psicologia , Feminino , Humanos , Imageamento por Ressonância Magnética/tendências , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos
10.
Addict Biol ; 27(1): e13033, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33908131

RESUMO

Ghrelin is a gastric-derived peptide hormone with demonstrated impact on alcohol intake and craving, but the reverse side of this bidirectional link, that is, the effects of alcohol on the ghrelin system, remains to be fully established. To further characterize this relationship, we examined (1) ghrelin levels via secondary analysis of human laboratory alcohol administration experiments with heavy-drinking participants; (2) expression of ghrelin, ghrelin receptor, and ghrelin-O-acyltransferase (GOAT) genes (GHRL, GHSR, and MBOAT4, respectively) in post-mortem brain tissue from individuals with alcohol use disorder (AUD) versus controls; (3) ghrelin levels in Ghsr knockout and wild-type rats following intraperitoneal (i.p.) alcohol administration; (4) effect of alcohol on ghrelin secretion from gastric mucosa cells ex vivo and GOAT enzymatic activity in vitro; and (5) ghrelin levels in rats following i.p. alcohol administration versus a calorically equivalent non-alcoholic sucrose solution. Acyl- and total-ghrelin levels decreased following acute alcohol administration in humans, but AUD was not associated with changes in central expression of ghrelin system genes in post-mortem tissue. In rats, alcohol decreased acyl-ghrelin, but not des-acyl-ghrelin, in both Ghsr knockout and wild-type rats. No dose-dependent effects of alcohol were observed on acyl-ghrelin secretion from gastric mucosa cells or on GOAT acylation activity. Lastly, alcohol and sucrose produced distinct effects on ghrelin in rats despite equivalent caloric value. Our findings suggest that alcohol acutely decreases peripheral ghrelin concentrations in vivo, but not in proportion to alcohol's caloric value or through direct interaction with ghrelin-secreting gastric mucosal cells, the ghrelin receptor, or the GOAT enzyme.


Assuntos
Etanol/metabolismo , Grelina/metabolismo , Receptores de Grelina/metabolismo , Animais , Glicemia/metabolismo , Grelina/análogos & derivados , Humanos , Masculino , Ratos , Transdução de Sinais
11.
Proc Natl Acad Sci U S A ; 116(51): 25974-25981, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31792171

RESUMO

Aldehyde dehydrogenase 2 (ALDH2), a key enzyme for detoxification the ethanol metabolite acetaldehyde, is recognized as a promising therapeutic target to treat alcohol use disorders (AUDs). Disulfiram, a potent ALDH2 inhibitor, is an approved drug for the treatment of AUD but has clinical limitations due to its side effects. This study aims to elucidate the relative contribution of different organs in acetaldehyde clearance through ALDH2 by using global- (Aldh2-/-) and tissue-specific Aldh2-deficient mice, and to examine whether liver-specific ALDH2 inhibition can prevent alcohol-seeking behavior. Aldh2-/- mice showed markedly higher acetaldehyde concentrations than wild-type (WT) mice after acute ethanol gavage. Acetaldehyde levels in hepatocyte-specific Aldh2 knockout (Aldh2Hep-/-) mice were significantly higher than those in WT mice post gavage, but did not reach the levels observed in Aldh2-/- mice. Energy expenditure and motility were dramatically dampened in Aldh2-/- mice, but moderately decreased in Aldh2Hep-/- mice compared to controls. In the 2-bottle paradigm and the drinking-in-the-dark model, Aldh2-/- mice drank negligible volumes from ethanol-containing bottles, whereas Aldh2Hep-/- mice showed reduced alcohol preference at high but not low alcohol concentrations. Glial cell- or neuron-specific Aldh2 deficiency did not affect voluntary alcohol consumption. Finally, specific liver Aldh2 knockdown via injection of shAldh2 markedly decreased alcohol preference. In conclusion, although the liver is the major organ responsible for acetaldehyde metabolism, a cumulative effect of ALDH2 from other organs likely also contributes to systemic acetaldehyde clearance. Liver-targeted ALDH2 inhibition can decrease heavy drinking without affecting moderate drinking, providing molecular basis for hepatic ALDH2 targeting/editing for the treatment of AUD.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Aldeído-Desidrogenase Mitocondrial/efeitos dos fármacos , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Etanol/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Acetaldeído/metabolismo , Alanina Transaminase/sangue , Alcoolismo/genética , Alcoolismo/metabolismo , Animais , Quimiocina CCL2/metabolismo , Deleção de Genes , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroglia , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Transcriptoma
12.
Mol Psychiatry ; 25(8): 1759-1776, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-30283033

RESUMO

Cocaine-induced vasoconstriction reduces blood flow, which can jeopardize neuronal function and in the prefrontal cortex (PFC) it may contribute to compulsive cocaine intake. Here, we used integrated optical imaging in a rat self-administration and a mouse noncontingent model, to investigate whether changes in the cerebrovascular system in the PFC contribute to cocaine self-administration, and whether they recover with detoxification. In both animal models, cocaine induced severe vasoconstriction and marked reductions in cerebral blood flow (CBF) in the PFC, which were exacerbated with chronic exposure and with escalation of cocaine intake. Though there was a significant proliferation of blood vessels in areas of vasoconstriction (angiogenesis), CBF remained reduced even after 1 month of detoxification. Treatment with Nifedipine (Ca2+ antagonist and vasodilator) prevented cocaine-induced CBF decreases and neuronal Ca2+ changes in the PFC, and decreased cocaine intake and blocked reinstatement of drug seeking. These findings provide support for the hypothesis that cocaine-induced CBF reductions lead to neuronal deficits that contribute to hypofrontality and to compulsive-like cocaine intake in addiction, and document that these deficits persist at least one month after detoxification. Our preliminary data showed that nifedipine might be beneficial in preventing cocaine-induced vascular toxicity and in reducing cocaine intake and preventing relapse.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/etiologia , Cocaína/administração & dosagem , Cocaína/farmacologia , Isquemia/induzido quimicamente , Animais , Comportamento de Procura de Droga/efeitos dos fármacos , Masculino , Camundongos , Nifedipino/farmacologia , Córtex Pré-Frontal/irrigação sanguínea , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Wistar , Autoadministração
13.
Addict Biol ; 26(2): e12903, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32286721

RESUMO

In March 2019, a scientific meeting was held at the University of California, Los Angeles (UCLA) Luskin Center to discuss approaches to expedite the translation of neurobiological insights to advances in the treatment of alcohol use disorder (AUD). A guiding theme that emerged was that while translational research in AUD is clearly a challenge, it is also a field ripe with opportunities. Herein, we seek to summarize and disseminate the recommendations for the future of translational AUD research using four sections. First, we briefly review the current landscape of AUD treatment including the available evidence-based treatments and their uptake in clinical settings. Second, we discuss AUD treatment development efforts from a translational science viewpoint. We review current hurdles to treatment development as well as opportunities for mechanism-informed treatment. Third, we consider models of translational science and public health impact. Together, these critical insights serve as the bases for a series of recommendations and future directions. Towards the goal of improving clinical care and population health for AUD, scientists are tasked with bolstering the clinical applicability of their research findings so as to expedite the translation of knowledge into patient care.


Assuntos
Alcoolismo/patologia , Alcoolismo/terapia , Pesquisa Translacional Biomédica/organização & administração , Dissuasores de Álcool/uso terapêutico , Ensaios Clínicos como Assunto/organização & administração , Terapia Cognitivo-Comportamental/métodos , Humanos , Assistência Centrada no Paciente/organização & administração , Terminologia como Assunto , Estados Unidos
14.
Annu Rev Pharmacol Toxicol ; 56: 299-322, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26514207

RESUMO

The identification of a heuristic framework for the stages of the addiction cycle that are linked to neurocircuitry changes in pathophysiology includes the binge/intoxication stage, the withdrawal/negative affect stage, and the preoccupation/anticipation (craving) stage, which represent neuroadaptations in three neurocircuits (basal ganglia, extended amygdala, and frontal cortex, respectively). The identification of excellent and validated animal models, the development of human laboratory models, and an enormous surge in our understanding of neurocircuitry and neuropharmacological mechanisms have provided a revisionist view of addiction that emphasizes the loss of brain reward function and gain of stress function that drive negative reinforcement (the dark side of addiction) as a key to compulsive drug seeking. Reversing the dark side of addiction not only explains much of the existing successful pharmacotherapies for addiction but also points to vast new opportunities for future medications to alleviate this major source of human suffering.


Assuntos
Comportamento Aditivo/tratamento farmacológico , Preparações Farmacêuticas/administração & dosagem , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Animais , Descoberta de Drogas/métodos , Humanos
15.
Eur J Neurosci ; 50(1): 1831-1842, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30803059

RESUMO

Excessive alcohol consumption is associated with neuroinflammation, which likely contributes to alcohol-related pathology. However, positron emission tomography (PET) studies using radioligands for the 18-kDa translocator protein (TSPO), which is considered a biomarker of neuroinflammation, reported decreased binding in alcohol use disorder (AUD) participants compared to controls. In contrast, autoradiographic findings in alcohol exposed rats reported increases in TSPO radioligand binding. To assess if these discrepancies reflected differences between in vitro and in vivo methodologies, we compared in vitro autoradiography (using [3 H]PBR28 and [3 H]PK11195) with in vivo PET (using [11 C]PBR28) in male, Wistar rats exposed to chronic alcohol-vapor (dependent n = 10) and in rats exposed to air-vapor (nondependent n = 10). PET scans were obtained with [11 C]PBR28, after which rats were euthanized and the brains were harvested for autoradiography with [3 H]PBR28 and [3 H]PK11195 (n = 7 dependent and n = 7 nondependent), and binding quantified in hippocampus, thalamus, and parietal cortex. Autoradiography revealed significantly higher binding in alcohol-dependent rats for both radioligands in thalamus and hippocampus (trend level for [3 H]PBR28) compared to nondependent rats, and these group differences were stronger for [3 H]PK11195 than [3 H]PBR28. In contrast, PET measures obtained in the same rats showed no group difference in [11 C]PBR28 binding. Our in vitro data are consistent with neuroinflammation associated with chronic alcohol exposure. Failure to observe similar increases in [11 C]PBR28 binding in vivo suggests the possibility that a mechanism mediated by chronic alcohol exposure interferes with [11 C]PBR28 binding to TSPO in vivo. These data question the sensitivity of PBR28 PET as a methodology to assess neuroinflammation in AUD.


Assuntos
Alcoolismo/metabolismo , Autorradiografia , Proteínas de Transporte/metabolismo , Hipocampo/metabolismo , Inflamação/metabolismo , Lobo Parietal/metabolismo , Tomografia por Emissão de Pósitrons , Receptores de GABA-A/metabolismo , Tálamo/metabolismo , Alcoolismo/complicações , Alcoolismo/diagnóstico por imagem , Animais , Autorradiografia/normas , Hipocampo/diagnóstico por imagem , Técnicas In Vitro , Inflamação/diagnóstico por imagem , Inflamação/etiologia , Microscopia Intravital , Masculino , Lobo Parietal/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/normas , Ensaio Radioligante , Ratos , Ratos Wistar , Tálamo/diagnóstico por imagem
16.
Mol Psychiatry ; 23(12): 2266-2276, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29880881

RESUMO

One of the key features of addiction is the escalated drug intake. The neural mechanisms involved in the transition to addiction remain to be elucidated. Since abnormal neuronal activity within the subthalamic nucleus (STN) stands as potential general neuromarker common to impulse control spectrum deficits, as observed in obsessive-compulsive disorders, the present study recorded and manipulated STN neuronal activity during the initial transition to addiction (i.e., escalation) and post-abstinence relapse (i.e., re-escalation) in rats with extended drug access. We found that low-frequency (theta and beta bands) neuronal oscillations in the STN increase with escalation of cocaine intake and that either lesion or high-frequency stimulation prevents the escalation of cocaine intake. STN-HFS also reduces re-escalation after prolonged, but not short, protracted abstinence, suggesting that STN-HFS is an effective prevention for relapse when baseline rates of self-administration have been re-established. Thus, STN dysfunctions may represent an underlying mechanism for cocaine addiction and therefore a promising target for the treatment of addiction.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Núcleo Subtalâmico/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Cocaína/farmacologia , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Masculino , Neurônios/fisiologia , Ratos , Autoadministração
17.
Alcohol Alcohol ; 54(5): 497-502, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31535696

RESUMO

AIMS: The development of novel and more effective medications for alcohol use disorder (AUD) is an important unmet medical need. Drug repositioning or repurposing is an appealing strategy to bring new therapies to the clinic because it greatly reduces the overall costs of drug development and expedites the availability of treatments to those who need them. Probenecid, p-(di-n-propylsulfamyl)-benzoic acid, is a drug used clinically to treat hyperuricemia and gout due to its activity as an inhibitor of the kidneys' organic anion transporter that reclaims uric acid from urine. Probenecid also inhibits pannexin1 channels that are involved in purinergic neurotransmission and inflammation, which have been implicated in alcohol's effects and motivation for alcohol. Therefore, we tested the effects of probenecid on alcohol intake in rodents. METHODS: We tested the effects of probenecid on operant oral alcohol self-administration in alcohol-dependent rats during acute withdrawal as well as in nondependent rats and in the drinking-in-the-dark (DID) paradigm of binge-like drinking in mice. RESULTS: Probenecid reduced alcohol intake in both dependent and nondependent rats and in the DID paradigm in mice without affecting water or saccharin intake, indicating that probenecid's effect was selective for alcohol and not the result of a general reduction in reward. CONCLUSIONS: These results raise the possibility that pannexin1 is a novel therapeutic target for the treatment of AUD. The clinical use of probenecid has been found to be generally safe, suggesting that it can be a candidate for drug repositioning for the treatment of AUD.


Assuntos
Consumo de Bebidas Alcoólicas/tratamento farmacológico , Alcoolismo/tratamento farmacológico , Conexinas/antagonistas & inibidores , Sistemas de Liberação de Medicamentos/métodos , Etanol/administração & dosagem , Proteínas do Tecido Nervoso/antagonistas & inibidores , Probenecid/uso terapêutico , Adjuvantes Farmacêuticos/farmacologia , Adjuvantes Farmacêuticos/uso terapêutico , Consumo de Bebidas Alcoólicas/metabolismo , Consumo de Bebidas Alcoólicas/psicologia , Alcoolismo/metabolismo , Alcoolismo/psicologia , Animais , Conexinas/metabolismo , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Probenecid/farmacologia , Ratos , Ratos Wistar , Autoadministração
18.
Addict Biol ; 24(3): 485-497, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29504647

RESUMO

Cocaine addiction is associated with dysfunction of the prefrontal cortex (PFC), which facilitates relapse and compulsive drug taking. To assess if cocaine's effects on both neuronal and vascular activity contribute to PFC dysfunction, we used optical coherence tomography and multi-wavelength laser speckle to measure vascularization and hemodynamics and used GCaMP6f to monitor intracellular Ca2+ levels ([Ca2+ ]in ) as a marker of neuronal activity. Rats were given short (1 hour; ShA) or long (6 hours; LgA) access cocaine self-administration. As expected, LgA but not ShA rats escalated cocaine intake. In naïve rats, acute cocaine decreased oxygenated hemoglobin, increased deoxygenated hemoglobin and reduced cerebral blood flow in PFC, likely due to cocaine-induced vasoconstriction. ShA rats showed enhanced hemodynamic response and slower recovery after cocaine, versus naïve. LgA rats showed a blunted hemodynamic response, but an enhanced PFC neuronal [Ca2+ ]in increase after cocaine challenge associated with drug intake. Both ShA and LgA groups had higher vessel density, indicative of angiogenesis, presumably to compensate for cocaine's vasoconstricting effects. Cocaine self-administration modified the PFC cerebrovascular responses enhancing it in ShA and attenuating it in LgA animals. In contrast, LgA but not ShA animals showed sensitized neuronal reactivity to acute cocaine in the PFC. The opposite changes in hemodynamics (decreased) and neuronal responses (enhanced) in LgA rats indicate that these constitute distinct effects and suggest that the neuronal and not the vascular effects are associated with escalation of cocaine intake in addiction whereas its vascular effect in PFC might contribute to cognitive deficits that increase vulnerability to relapse.


Assuntos
Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Hemodinâmica/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Anestésicos Inalatórios , Animais , Circulação Cerebrovascular/efeitos dos fármacos , Condicionamento Operante , Hemoglobinas/metabolismo , Isoflurano , Masculino , Neuroimagem/métodos , Córtex Pré-Frontal/irrigação sanguínea , Ratos Sprague-Dawley , Autoadministração , Tomografia de Coerência Óptica , Vasoconstrição/efeitos dos fármacos
19.
Pharmacol Rev ; 68(2): 242-63, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26772794

RESUMO

The purpose of this review is to discuss ways to think about and study sex differences in preclinical animal models. We use the framework of addiction, in which animal models have excellent face and construct validity, to illustrate the importance of considering sex differences. There are four types of sex differences: qualitative, quantitative, population, and mechanistic. A better understanding of the ways males and females can differ will help scientists design experiments to characterize better the presence or absence of sex differences in new phenomena that they are investigating. We have outlined major quantitative, population, and mechanistic sex differences in the addiction domain using a heuristic framework of the three established stages of the addiction cycle: binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation. Female rats, in general, acquire the self-administration of drugs and alcohol more rapidly, escalate their drug taking with extended access more rapidly, show more motivational withdrawal, and (where tested in animal models of "craving") show greater reinstatement. The one exception is that female rats show less motivational withdrawal to alcohol. The bases for these quantitative sex differences appear to be both organizational, in that estradiol-treated neonatal animals show the male phenotype, and activational, in that the female phenotype depends on the effects of gonadal hormones. In animals, differences within the estrous cycle can be observed but are relatively minor. Such hormonal effects seem to be most prevalent during the acquisition of drug taking and less influential once compulsive drug taking is established and are linked largely to progesterone and estradiol. This review emphasizes not only significant differences in the phenotypes of females and males in the domain of addiction but emphasizes the paucity of data to date in our understanding of those differences.


Assuntos
Modelos Animais de Doenças , Transtornos Relacionados ao Uso de Substâncias , Animais , Humanos , Caracteres Sexuais , Transtornos Relacionados ao Uso de Substâncias/metabolismo
20.
J Neurosci ; 37(5): 1139-1155, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27986929

RESUMO

Toll-like receptor 4 (TLR4) is a critical component of innate immune signaling and has been implicated in alcohol responses in preclinical and clinical models. Members of the Integrative Neuroscience Initiative on Alcoholism (INIA-Neuroimmune) consortium tested the hypothesis that TLR4 mediates excessive ethanol drinking using the following models: (1) Tlr4 knock-out (KO) rats, (2) selective knockdown of Tlr4 mRNA in mouse nucleus accumbens (NAc), and (3) injection of the TLR4 antagonist (+)-naloxone in mice. Lipopolysaccharide (LPS) decreased food/water intake and body weight in ethanol-naive and ethanol-trained wild-type (WT), but not Tlr4 KO rats. There were no consistent genotypic differences in two-bottle choice chronic ethanol intake or operant self-administration in rats before or after dependence. In mice, (+)-naloxone did not decrease drinking-in-the-dark and only modestly inhibited dependence-driven consumption at the highest dose. Tlr4 knockdown in mouse NAc did not decrease drinking in the two-bottle choice continuous or intermittent access tests. However, the latency to ethanol-induced loss of righting reflex increased and the duration decreased in KO versus WT rats. In rat central amygdala neurons, deletion of Tlr4 altered GABAA receptor function, but not GABA release. Although there were no genotype differences in acute ethanol effects before or after chronic intermittent ethanol exposure, genotype differences were observed after LPS exposure. Using different species and sexes, different methods to inhibit TLR4 signaling, and different ethanol consumption tests, our comprehensive studies indicate that TLR4 may play a role in ethanol-induced sedation and GABAA receptor function, but does not regulate excessive drinking directly and would not be an effective therapeutic target. SIGNIFICANCE STATEMENT: Toll-like receptor 4 (TLR4) is a key mediator of innate immune signaling and has been implicated in alcohol responses in animal models and human alcoholics. Members of the Integrative Neuroscience Initiative on Alcoholism (INIA-Neuroimmune) consortium participated in the first comprehensive study across multiple laboratories to test the hypothesis that TLR4 regulates excessive alcohol consumption in different species and different models of chronic, dependence-driven, and binge-like drinking. Although TLR4 was not a critical determinant of excessive drinking, it was important in the acute sedative effects of alcohol. Current research efforts are directed at determining which neuroimmune pathways mediate excessive alcohol drinking and these findings will help to prioritize relevant pathways and potential therapeutic targets.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Consumo de Bebidas Alcoólicas/psicologia , Alcoolismo/genética , Alcoolismo/psicologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/fisiologia , Animais , Peso Corporal/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Feminino , Técnicas de Inativação de Genes , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Knockout , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Núcleo Accumbens/metabolismo , Ratos , Receptores de GABA-A/efeitos dos fármacos , Receptores de GABA-A/genética , Receptor 4 Toll-Like/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA