RESUMO
BACKGROUND: The benefit of pharmacogenetic testing before starting drug therapy has been well documented for several single gene-drug combinations. However, the clinical utility of a pre-emptive genotyping strategy using a pharmacogenetic panel has not been rigorously assessed. METHODS: We conducted an open-label, multicentre, controlled, cluster-randomised, crossover implementation study of a 12-gene pharmacogenetic panel in 18 hospitals, nine community health centres, and 28 community pharmacies in seven European countries (Austria, Greece, Italy, the Netherlands, Slovenia, Spain, and the UK). Patients aged 18 years or older receiving a first prescription for a drug clinically recommended in the guidelines of the Dutch Pharmacogenetics Working Group (ie, the index drug) as part of routine care were eligible for inclusion. Exclusion criteria included previous genetic testing for a gene relevant to the index drug, a planned duration of treatment of less than 7 consecutive days, and severe renal or liver insufficiency. All patients gave written informed consent before taking part in the study. Participants were genotyped for 50 germline variants in 12 genes, and those with an actionable variant (ie, a drug-gene interaction test result for which the Dutch Pharmacogenetics Working Group [DPWG] recommended a change to standard-of-care drug treatment) were treated according to DPWG recommendations. Patients in the control group received standard treatment. To prepare clinicians for pre-emptive pharmacogenetic testing, local teams were educated during a site-initiation visit and online educational material was made available. The primary outcome was the occurrence of clinically relevant adverse drug reactions within the 12-week follow-up period. Analyses were irrespective of patient adherence to the DPWG guidelines. The primary analysis was done using a gatekeeping analysis, in which outcomes in people with an actionable drug-gene interaction in the study group versus the control group were compared, and only if the difference was statistically significant was an analysis done that included all of the patients in the study. Outcomes were compared between the study and control groups, both for patients with an actionable drug-gene interaction test result (ie, a result for which the DPWG recommended a change to standard-of-care drug treatment) and for all patients who received at least one dose of index drug. The safety analysis included all participants who received at least one dose of a study drug. This study is registered with ClinicalTrials.gov, NCT03093818 and is closed to new participants. FINDINGS: Between March 7, 2017, and June 30, 2020, 41â696 patients were assessed for eligibility and 6944 (51·4 % female, 48·6% male; 97·7% self-reported European, Mediterranean, or Middle Eastern ethnicity) were enrolled and assigned to receive genotype-guided drug treatment (n=3342) or standard care (n=3602). 99 patients (52 [1·6%] of the study group and 47 [1·3%] of the control group) withdrew consent after group assignment. 652 participants (367 [11·0%] in the study group and 285 [7·9%] in the control group) were lost to follow-up. In patients with an actionable test result for the index drug (n=1558), a clinically relevant adverse drug reaction occurred in 152 (21·0%) of 725 patients in the study group and 231 (27·7%) of 833 patients in the control group (odds ratio [OR] 0·70 [95% CI 0·54-0·91]; p=0·0075), whereas for all patients, the incidence was 628 (21·5%) of 2923 patients in the study group and 934 (28·6%) of 3270 patients in the control group (OR 0·70 [95% CI 0·61-0·79]; p <0·0001). INTERPRETATION: Genotype-guided treatment using a 12-gene pharmacogenetic panel significantly reduced the incidence of clinically relevant adverse drug reactions and was feasible across diverse European health-care system organisations and settings. Large-scale implementation could help to make drug therapy increasingly safe. FUNDING: European Union Horizon 2020.
Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Farmacogenética , Humanos , Masculino , Feminino , Testes Genéticos , Genótipo , Combinação de Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Resultado do TratamentoRESUMO
Protein crystallization in cells has been observed several times in nature. However, owing to their small size these crystals have not yet been used for X-ray crystallographic analysis. We prepared nano-sized in vivo-grown crystals of Trypanosoma brucei enzymes and applied the emerging method of free-electron laser-based serial femtosecond crystallography to record interpretable diffraction data. This combined approach will open new opportunities in structural systems biology.
Assuntos
Cristalografia por Raios X/métodos , Cristalografia/métodos , Proteínas/química , Proteínas/ultraestrutura , Ligação Proteica/efeitos da radiação , Conformação Proteica/efeitos da radiação , Proteínas/efeitos da radiação , Solubilidade/efeitos da radiação , Raios XRESUMO
BACKGROUND: The clinical implementation of pharmacogenomics (PGx) could be one of the first milestones towards realizing personalized medicine in routine care. However, its widespread adoption requires the availability of suitable clinical decision support (CDS) systems, which is often impeded by the fragmentation or absence of adequate health IT infrastructures. We report results of CDS implementation in the large-scale European research project Ubiquitous Pharmacogenomics (U-PGx), in which PGx CDS was rolled out and evaluated across more than 15 clinical sites in the Netherlands, Spain, Slovenia, Italy, Greece, United Kingdom and Austria, covering a wide variety of healthcare settings. METHODS: We evaluated the CDS implementation process through qualitative and quantitative process indicators. Quantitative indicators included statistics on generated PGx reports, median time from sampled upload until report delivery and statistics on report retrievals via the mobile-based CDS tool. Adoption of different CDS tools, uptake and usability were further investigated through a user survey among healthcare providers. Results of a risk assessment conducted prior to the implementation process were retrospectively analyzed and compared to actual encountered difficulties and their impact. RESULTS: As of March 2021, personalized PGx reports were produced from 6884 genotyped samples with a median delivery time of twenty minutes. Out of 131 invited healthcare providers, 65 completed the questionnaire (response rate: 49.6%). Overall satisfaction rates with the different CDS tools varied between 63.6% and 85.2% per tool. Delays in implementation were caused by challenges including institutional factors and complexities in the development of required tools and reference data resources, such as genotype-phenotype mappings. CONCLUSIONS: We demonstrated the feasibility of implementing a standardized PGx decision support solution in a multinational, multi-language and multi-center setting. Remaining challenges for future wide-scale roll-out include the harmonization of existing PGx information in guidelines and drug labels, the need for strategies to lower the barrier of PGx CDS adoption for healthcare institutions and providers, and easier compliance with regulatory and legal frameworks.
Assuntos
Sistemas de Apoio a Decisões Clínicas , Farmacogenética , Farmacogenética/métodos , Medicina de Precisão/métodos , Estudos Retrospectivos , SoftwareRESUMO
Clinical pharmacogenomics (PGx) has the potential to make pharmacotherapy safer and more effective by utilizing genetic patient data for drug dosing and selection. However, widespread adoption of PGx depends on its successful integration into routine clinical care through clinical decision support tools, which is often hampered by insufficient or fragmented infrastructures. This paper describes the setup and implementation of a unique multimodal, multilingual clinical decision support intervention consisting of digital, paper-, and mobile-based tools that are deployed across implementation sites in seven European countries participating in the Ubiquitous PGx (U-PGx) project.
Assuntos
Sistemas de Apoio a Decisões Clínicas , Farmacogenética , Europa (Continente) , Humanos , Bases de Conhecimento , Aplicativos Móveis , MultilinguismoRESUMO
The Trypanosoma brucei cysteine protease cathepsin B (TbCatB), which is involved in host protein degradation, is a promising target to develop new treatments against sleeping sickness, a fatal disease caused by this protozoan parasite. The structure of the mature, active form of TbCatB has so far not provided sufficient information for the design of a safe and specific drug against T. brucei. By combining two recent innovations, in vivo crystallization and serial femtosecond crystallography, we obtained the room-temperature 2.1 angstrom resolution structure of the fully glycosylated precursor complex of TbCatB. The structure reveals the mechanism of native TbCatB inhibition and demonstrates that new biomolecular information can be obtained by the "diffraction-before-destruction" approach of x-ray free-electron lasers from hundreds of thousands of individual microcrystals.
Assuntos
Catepsina B/química , Proteínas de Protozoários/química , Trypanosoma brucei brucei/enzimologia , Sequência de Aminoácidos , Animais , Domínio Catalítico , Catepsina B/antagonistas & inibidores , Cristalização , Cristalografia por Raios X , Precursores Enzimáticos/química , Glicosilação , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Proteínas de Protozoários/antagonistas & inibidores , Células Sf9 , Spodoptera , Raios XRESUMO
Bioinformatic searches of genome databases revealed that the number of autophagy-related genes (ATG) is considerably lower in trypanosomes than in higher eukaryotes and even in yeast. This raises the question of whether autophagy in this protozoan parasite is more primitive and represents a rudimentary paradigm due to its early branching off the evolutionary tree. We here present the crystal structure of TbATG8B. This molecule (MW 13.7 kDa) belongs to the ubiquitin-like proteins showing the typical ubiquitin fold and strong sequence homology to LC3, the human homologue. Due to its characteristic folding, it should readily bind to TbATG4.1 for being processed. This presumption was tested by molecular modeling approaches, docking TbATG8B to a homology model of TbATG4.1. Although exchanges of several amino acids are evident from sequence comparisons, the overall structure seems very much alike and the necessary catalytic triad (C-D-H) is well conserved in TbATG4.1. Thus membrane formation during appearance of the autophagic bodies seems very similar in trypanosomes and their higher eukaryotic counterpart.
Assuntos
Autofagia , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/citologia , Trypanosoma brucei brucei/metabolismo , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Genes de Protozoários , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Proteínas de Protozoários/isolamento & purificação , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Homologia Estrutural de Proteína , Trypanosoma brucei brucei/genéticaRESUMO
Phylogenetic analyses based on defined proteins or different RNA species have revealed that the order kinetoplastida belongs to the early-branching eukaryotes and may thus contain organisms in which complex cellular events are easier to analyze. This view was further supported by results from a bioinformatic survey that suggested that nearly half of the autophagy-related proteins existent in yeast are missing in trypanosomatids. On the other hand, these organisms have evolved a highly sophisticated machinery to escape from the different host immune-response strategies and have learned to cope with extremely variable environmental conditions by morphological and functional reorganization of the cell. For both the stress response and the differentiation processes, autophagy seems to be an indispensable prerequisite. So far autophagy has not been systematically investigated in trypanosomatids. Here we present technical information on how to handle the different parasites belonging to this order and give an overview of the current status of autophagy research in these organisms.