Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(21): 25134-25147, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35766151

RESUMO

It was recently reported that the most popular electron-accepting units introduced to π-conjugated oligomers studied for organic photovoltaic applications are susceptible to unwanted and even destructive photochemical reactions. The consequences of Z/E photoisomerization of the popular 2-(1,1-dicyanomethylene)rhodanine (RCN) unit on the optical and morphological properties of a homologous series of RCN-functionalized oligothiophenes are studied here. Oligomers consisting of one, two, or three thiophene units were studied as pure Z isomers and with E isomer compositions of 25, 53, and 45%, respectively, for Z/E mixtures. Solutions of Z isomers and Z/E mixtures were characterized by UV-vis and photoluminescence spectroscopy, wherein changes to optical properties were evaluated on the basis of E isomer content. X-ray diffraction of thin-film Z/E mixtures reveals crystalline domains of both Z and E forms after thermal annealing for mono- and bithiophene oligomers, with greater interplanar spacing for E crystalline domains than the Z counterparts along the substrate normal direction. The surface morphology viewed by atomic force microscopy also shows fiberlike structures for the E form with a much larger aspect ratio than for the Z domains in the bithiophene oligomer. Optical characterization reveals drastic changes in the solid state upon introduction of the E form for the mono- and bithiophene derivatives, whereas subtle consequences are noted for the terthiophene analogue. Most notably, a 132 nm redshift in maximum absorption occurs for the bithiophene oligomer films containing 53% E isomer compared to the pure Z counterpart. Finally, although solid-state photoisomerization experiments find no evidence of Z → E isomerization in polycrystalline Z films, E → Z isomerization is observed and becomes more restrictive in films with higher crystallinity (i.e., after thermal annealing). This structure-property study, which elucidates the consequences of the RCN configuration on solid-state packing and optical properties, is expected to guide the development of more efficient and stable organic optoelectronic devices.

2.
Pharmaceuticals (Basel) ; 15(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35056096

RESUMO

The global health concern of antimicrobial resistance has harnessed research interest to find new classes of antibiotics to combat disease-causing pathogens. In our studies, 3-halobenzo[b]thiophene derivatives were synthesized and tested for their antimicrobial activities using the broth microdilution susceptibility method. The 3-halo substituted benzo[b]thiophenes were synthesized starting from 2-alkynyl thioanisoles using a convenient electrophilic cyclization methodology that utilizes sodium halides as the source of electrophilic halogens when reacted along with copper(II) sulfate. This environmentally benign methodology is facile, uses ethanol as the solvent, and results in 3-halo substituted benzo[b]thiophene structures in very high yields. The cyclohexanol-substituted 3-chloro and 3-bromobenzo[b]thiophenes resulted in a low MIC of 16 µg/mL against Gram-positive bacteria and yeast. Additionally, in silico absorption, distribution, metabolism, and excretion (ADME) properties of the compounds were determined. The compounds with the lowest MIC values showed excellent drug-like properties with no violations to Lipinski, Veber, and Muegge filters. The time-kill curve was obtained for cyclohexanol-substituted 3-chlorobenzo[b]thiophenes against Staphylococcus aureus, which showed fast bactericidal activity at MIC.

3.
Chem Sci ; 11(37): 10190-10197, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34094283

RESUMO

π-Conjugated oligomers functionalized with the popular dicyanorhodanine (RCN) electron acceptor are shown to be susceptible to photo-induced Z/E isomerization. The stereochemistry of two model RCN-functionalized thiophenes is confirmed by single crystal X-ray analysis and 2D NMR, and shown to be the thermodynamically stable Z form. Relative energies, Z/E configurations, and conformational preferences are modelled using density functional theory (DFT). The photophysical properties of the model compounds are explored experimentally and computationally; the Z and E isomers display similar absorption profiles with significant spectral overlap and are inseparable upon irradiation to a photostationary state. The well-behaved photoisomerization process is routinely observable by thin-layer chromatography, UV-vis, and NMR, and the photochemical behavior of the two RCN-functionalized thiophenes is characterized under varying wavelengths of irradiation. Ultraviolet (254 nm) irradiation results in photostationary state compositions of 56/44 and 69/31 Z-isomer/E-isomer for substrates functionalized with one thiophene and two thiophenes, respectively. Ambient laboratory lighting results in excess of 10 percent E-isomer for each species in solution, an important consideration for processing such materials, particularly for organic photovoltaic applications. In addition, a photoswitching experiment is conducted to demonstrate the reversible nature of the photoreaction, where little evidence of fatigue is observed over numerous switching cycles. Overall, this work showcases an approach to characterize the stereochemistry and photochemical behavior of dicyanorhodanine-functionalized thiophenes, widely used components of functional molecules and materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA