Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(17): e2112225119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35452310

RESUMO

Hypocretin (Hcrt), also known as orexin, neuropeptide signaling stabilizes sleep and wakefulness in all vertebrates. A lack of Hcrt causes the sleep disorder narcolepsy, and increased Hcrt signaling has been speculated to cause insomnia, but while the signaling pathways of Hcrt are relatively well-described, the intracellular mechanisms that regulate its expression remain unclear. Here, we tested the role of microRNAs (miRNAs) in regulating Hcrt expression. We found that miR-137, miR-637, and miR-654-5p target the human HCRT gene. miR-137 is evolutionarily conserved and also targets mouse Hcrt as does miR-665. Inhibition of miR-137 specifically in Hcrt neurons resulted in Hcrt upregulation, longer episodes of wakefulness, and significantly longer wake bouts in the first 4 h of the active phase. IL-13 stimulation upregulated endogenous miR-137, while Hcrt mRNA decreased both in vitro and in vivo. Furthermore, knockdown of miR-137 in zebrafish substantially increased wakefulness. Finally, we show that in humans, the MIR137 locus is genetically associated with sleep duration. In conclusion, these results show that an evolutionarily conserved miR-137:Hcrt interaction is involved in sleep­wake regulation.


Assuntos
MicroRNAs , Neuropeptídeos , Animais , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , MicroRNAs/genética , Neuropeptídeos/metabolismo , Orexinas/genética , Orexinas/metabolismo , Sono/genética , Vigília/genética , Peixe-Zebra/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34330837

RESUMO

Ca2+/calmodulin-dependent protein kinase II alpha subunit (CaMKIIα) is a key neuronal signaling protein and an emerging drug target. The central hub domain regulates the activity of CaMKIIα by organizing the holoenzyme complex into functional oligomers, yet pharmacological modulation of the hub domain has never been demonstrated. Here, using a combination of photoaffinity labeling and chemical proteomics, we show that compounds related to the natural substance γ-hydroxybutyrate (GHB) bind selectively to CaMKIIα. By means of a 2.2-Å x-ray crystal structure of ligand-bound CaMKIIα hub, we reveal the molecular details of the binding site deep within the hub. Furthermore, we show that binding of GHB and related analogs to this site promotes concentration-dependent increases in hub thermal stability believed to alter holoenzyme functionality. Selectively under states of pathological CaMKIIα activation, hub ligands provide a significant and sustained neuroprotection, which is both time and dose dependent. This is demonstrated in neurons exposed to excitotoxicity and in a mouse model of cerebral ischemia with the selective GHB analog, HOCPCA (3-hydroxycyclopent-1-enecarboxylic acid). Together, our results indicate a hitherto unknown mechanism for neuroprotection by a highly specific and unforeseen interaction between the CaMKIIα hub domain and small molecule brain-penetrant GHB analogs. This establishes GHB analogs as powerful tools for investigating CaMKII neuropharmacology in general and as potential therapeutic compounds for cerebral ischemia in particular.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Oxibato de Sódio/metabolismo , Sítios de Ligação , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Ácidos Carboxílicos/farmacologia , Cristalografia por Raios X , Ciclopentanos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Neuroproteção , Ligação Proteica , Domínios Proteicos , Transdução de Sinais
3.
J Neurosci ; 40(11): 2371-2380, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32047056

RESUMO

Chronic electroencephalography (EEG) is a widely used tool for monitoring cortical electrical activity in experimental animals. Although chronic implants allow for high-quality, long-term recordings in preclinical studies, the electrodes are foreign objects and might therefore be expected to induce a local inflammatory response. We here analyzed the effects of chronic cranial electrode implantation on glymphatic fluid transport and in provoking structural changes in the meninges and cerebral cortex of male and female mice. Immunohistochemical analysis of brain tissue and dura revealed reactive gliosis in the cortex underlying the electrodes and extensive meningeal lymphangiogenesis in the surrounding dura. Meningeal lymphangiogenesis was also evident in mice prepared with the commonly used chronic cranial window. Glymphatic influx of a CSF tracer was significantly enhanced at 30 d postsurgery in both awake and ketamine-xylazine anesthetized mice with electrodes, supporting the concept that glymphatic influx and intracranial lymphatic drainage are interconnected. Altogether, the experimental results provide clear evidence that chronic implantation of EEG electrodes is associated with significant changes in the brain's fluid transport system. Future studies involving EEG recordings and chronic cranial windows must consider the physiological consequences of cranial implants, which include glial scarring, meningeal lymphangiogenesis, and increased glymphatic activity.SIGNIFICANCE STATEMENT This study shows that implantation of extradural electrodes provokes meningeal lymphangiogenesis, enhanced glymphatic influx of CSF, and reactive gliosis. The analysis based on CSF tracer injection in combination with immunohistochemistry showed that chronically implanted electroencephalography electrodes were surrounded by lymphatic sprouts originating from lymphatic vasculature along the dural sinuses and the middle meningeal artery. Likewise, chronic cranial windows provoked lymphatic sprouting. Tracer influx assessed in coronal slices was increased in agreement with previous reports identifying a close association between glymphatic activity and the meningeal lymphatic vasculature. Lymphangiogenesis in the meninges and altered glymphatic fluid transport after electrode implantation have not previously been described and adds new insights to the foreign body response of the CNS.


Assuntos
Dura-Máter/metabolismo , Eletrodos Implantados/efeitos adversos , Reação a Corpo Estranho/etiologia , Gliose/etiologia , Sistema Glinfático/fisiologia , Linfangiogênese , Animais , Astrócitos/fisiologia , Córtex Cerebral/patologia , Líquido Cefalorraquidiano/fisiologia , Dura-Máter/patologia , Eletroencefalografia/instrumentação , Feminino , Reação a Corpo Estranho/metabolismo , Gliose/metabolismo , Gliose/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/fisiologia , Técnica de Janela Cutânea , Fases do Sono/fisiologia
4.
Am J Hum Genet ; 96(1): 136-46, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25574827

RESUMO

Type 1 narcolepsy, a disorder caused by a lack of hypocretin (orexin), is so strongly associated with human leukocyte antigen (HLA) class II HLA-DQA1(∗)01:02-DQB1(∗)06:02 (DQ0602) that very few non-DQ0602 cases have been reported. A known triggering factor for narcolepsy is pandemic 2009 influenza H1N1, suggesting autoimmunity triggered by upper-airway infections. Additional effects of other HLA-DQ alleles have been reported consistently across multiple ethnic groups. Using over 3,000 case and 10,000 control individuals of European and Chinese background, we examined the effects of other HLA loci. After careful matching of HLA-DR and HLA-DQ in case and control individuals, we found strong protective effects of HLA-DPA1(∗)01:03-DPB1(∗)04:02 (DP0402; odds ratio [OR] = 0.51 [0.38-0.67], p = 1.01 × 10(-6)) and HLA-DPA1(∗)01:03-DPB1(∗)04:01 (DP0401; OR = 0.61 [0.47-0.80], p = 2.07 × 10(-4)) and predisposing effects of HLA-DPB1(∗)05:01 in Asians (OR = 1.76 [1.34-2.31], p = 4.71 × 10(-05)). Similar effects were found by conditional analysis controlling for HLA-DR and HLA-DQ with DP0402 (OR = 0.45 [0.38-0.55] p = 8.99 × 10(-17)) and DP0501 (OR = 1.38 [1.18-1.61], p = 7.11 × 10(-5)). HLA-class-II-independent associations with HLA-A(∗)11:01 (OR = 1.32 [1.13-1.54], p = 4.92 × 10(-4)), HLA-B(∗)35:03 (OR = 1.96 [1.41-2.70], p = 5.14 × 10(-5)), and HLA-B(∗)51:01 (OR = 1.49 [1.25-1.78], p = 1.09 × 10(-5)) were also seen across ethnic groups in the HLA class I region. These effects might reflect modulation of autoimmunity or indirect effects of HLA class I and HLA-DP alleles on response to viral infections such as that of influenza.


Assuntos
Cadeias beta de HLA-DP/genética , Antígenos de Histocompatibilidade Classe I/genética , Narcolepsia/genética , Alelos , Povo Asiático , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Loci Gênicos , Antígenos HLA-B/genética , Antígenos HLA-B/metabolismo , Antígenos HLA-DP/genética , Antígenos HLA-DP/metabolismo , Cadeias beta de HLA-DP/metabolismo , Cadeias alfa de HLA-DQ/genética , Cadeias alfa de HLA-DQ/metabolismo , Antígenos HLA-DR/genética , Antígenos HLA-DR/metabolismo , Haplótipos , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Masculino , Fatores de Risco , População Branca
5.
J Sleep Res ; 25(3): 356-64, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26809504

RESUMO

Narcolepsy with cataplexy is a rare disease with an estimated prevalence of 0.02% in European populations. Narcolepsy shares many features of rare disorders, in particular the lack of awareness of the disease with serious consequences for healthcare supply. Similar to other rare diseases, only a few European countries have registered narcolepsy cases in databases of the International Classification of Diseases or in registries of the European health authorities. A promising approach to identify disease-specific adverse health effects and needs in healthcare delivery in the field of rare diseases is to establish a distributed expert network. A first and important step is to create a database that allows collection, storage and dissemination of data on narcolepsy in a comprehensive and systematic way. Here, the first prospective web-based European narcolepsy database hosted by the European Narcolepsy Network is introduced. The database structure, standardization of data acquisition and quality control procedures are described, and an overview provided of the first 1079 patients from 18 European specialized centres. Due to its standardization this continuously increasing data pool is most promising to provide a better insight into many unsolved aspects of narcolepsy and related disorders, including clear phenotype characterization of subtypes of narcolepsy, more precise epidemiological data and knowledge on the natural history of narcolepsy, expectations about treatment effects, identification of post-marketing medication side-effects, and will contribute to improve clinical trial designs and provide facilities to further develop phase III trials.


Assuntos
Bases de Dados Factuais , Narcolepsia , Sistema de Registros , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Cataplexia/tratamento farmacológico , Cataplexia/epidemiologia , Bases de Dados Factuais/normas , Europa (Continente)/epidemiologia , Feminino , Humanos , Disseminação de Informação , Internet , Masculino , Pessoa de Meia-Idade , Narcolepsia/tratamento farmacológico , Narcolepsia/epidemiologia , Fenótipo , Vigilância de Produtos Comercializados , Estudos Prospectivos , Controle de Qualidade , Doenças Raras/tratamento farmacológico , Doenças Raras/epidemiologia , Sistema de Registros/normas , Adulto Jovem
6.
Hum Mol Genet ; 21(10): 2205-10, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22328086

RESUMO

Autosomal dominant cerebellar ataxia, deafness and narcolepsy (ADCA-DN) is characterized by late onset (30-40 years old) cerebellar ataxia, sensory neuronal deafness, narcolepsy-cataplexy and dementia. We performed exome sequencing in five individuals from three ADCA-DN kindreds and identified DNMT1 as the only gene with mutations found in all five affected individuals. Sanger sequencing confirmed the de novo mutation p.Ala570Val in one family, and showed co-segregation of p.Val606Phe and p.Ala570Val, with the ADCA-DN phenotype, in two other kindreds. An additional ADCA-DN kindred with a p.GLY605Ala mutation was subsequently identified. Narcolepsy and deafness were the first symptoms to appear in all pedigrees, followed by ataxia. DNMT1 is a widely expressed DNA methyltransferase maintaining methylation patterns in development, and mediating transcriptional repression by direct binding to HDAC2. It is also highly expressed in immune cells and required for the differentiation of CD4+ into T regulatory cells. Mutations in exon 20 of this gene were recently reported to cause hereditary sensory neuropathy with dementia and hearing loss (HSAN1). Our mutations are all located in exon 21 and in very close spatial proximity, suggesting distinct phenotypes depending on mutation location within this gene.


Assuntos
Ataxia Cerebelar/genética , DNA (Citosina-5-)-Metiltransferases/genética , Surdez/genética , Genes Dominantes , Mutação , Narcolepsia/genética , Sequência de Aminoácidos , DNA (Citosina-5-)-Metiltransferase 1 , Exoma , Éxons , Humanos , Dados de Sequência Molecular , Linhagem , Fenótipo
7.
Nat Rev Immunol ; 24(1): 33-48, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37400646

RESUMO

Narcolepsy type 1 (NT1) is a chronic sleep disorder resulting from the loss of a small population of hypothalamic neurons that produce wake-promoting hypocretin (HCRT; also known as orexin) peptides. An immune-mediated pathology for NT1 has long been suspected given its exceptionally tight association with the MHC class II allele HLA-DQB1*06:02, as well as recent genetic evidence showing associations with polymorphisms of T cell receptor genes and other immune-relevant loci and the increased incidence of NT1 that has been observed after vaccination with the influenza vaccine Pandemrix. The search for both self-antigens and foreign antigens recognized by the pathogenic T cell response in NT1 is ongoing. Increased T cell reactivity against HCRT has been consistently reported in patients with NT1, but data demonstrating a primary role for T cells in neuronal destruction are currently lacking. Animal models are providing clues regarding the roles of autoreactive CD4+ and CD8+ T cells in the disease. Elucidation of the pathogenesis of NT1 will allow for the development of targeted immunotherapies at disease onset and could serve as a model for other immune-mediated neurological diseases.


Assuntos
Linfócitos T CD8-Positivos , Narcolepsia , Animais , Humanos , Narcolepsia/genética , Alelos
8.
Med Res Rev ; 33(1): 54-111, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21674551

RESUMO

The serotonergic system plays a key modulatory role in the brain and is the target for many drug treatments for brain disorders either through reuptake blockade or via interactions at the 14 subtypes of 5-HT receptors. This review provides the history and current status of radioligands used for positron emission tomography (PET) and single photon emission computerized tomography (SPECT) imaging of human brain serotonin (5-HT) receptors, the 5-HT transporter (SERT), and 5-HT synthesis rate. Currently available radioligands for in vivo brain imaging of the 5-HT system in humans include antagonists for the 5-HT(1A), 5-HT(1B), 5-HT(2A), and 5-HT(4) receptors, and for SERT. Here we describe the evolution of these radioligands, along with the attempts made to develop radioligands for additional serotonergic targets. We describe the properties needed for a radioligand to become successful and the main caveats. The success of a PET or SPECT radioligand can ultimately be assessed by its frequency of use, its utility in humans, and the number of research sites using it relative to its invention date, and so these aspects are also covered. In conclusion, the development of PET and SPECT radioligands to image serotonergic targets is of high interest, and successful evaluation in humans is leading to invaluable insight into normal and abnormal brain function, emphasizing the need for continued development of both SPECT and PET radioligands for human brain imaging.


Assuntos
Encéfalo/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/metabolismo , Receptores de Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Serotonina , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Encéfalo/metabolismo , Humanos , Serotonina/química , Serotonina/metabolismo , Antagonistas da Serotonina/metabolismo
9.
Trends Mol Med ; 29(1): 61-69, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36400667

RESUMO

Excessive daytime sleepiness (EDS) is a complex symptom characterized by a strong urge to sleep during daytime accompanied by problems such as attention deficits, anxiety, and lower cognitive performance. The efficacy of treatments for EDS is determined by their ability to decrease sleepiness, and less attention has been given to the effects these compounds have on the quality of the wake itself. Hypocretin (HCRT; orexin) signalling is implicated in narcolepsy, and hypocretin receptor 2 (HCRTR2) agonists are in clinical trials for treating EDS in narcolepsy. Here, we review preclinical research to determine how HCRTR2 agonists may affect attention and anxiety compared with other EDS treatment strategies. We conclude that such compounds may improve not only the quantity but also the quality of wake, and we hope that they will create opportunities for more nuanced treatment strategies in narcolepsy.


Assuntos
Narcolepsia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Narcolepsia/diagnóstico , Narcolepsia/tratamento farmacológico , Narcolepsia/genética , Neuropeptídeos/uso terapêutico , Receptores de Orexina/uso terapêutico , Orexinas/genética
10.
Elife ; 122023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37698546

RESUMO

Infection with Influenza A virus (IAV) causes the well-known symptoms of the flu, including fever, loss of appetite, and excessive sleepiness. These responses, mediated by the brain, will normally disappear once the virus is cleared from the system, but a severe respiratory virus infection may cause long-lasting neurological disturbances. These include encephalitis lethargica and narcolepsy. The mechanisms behind such long lasting changes are unknown. The hypothalamus is a central regulator of the homeostatic response during a viral challenge. To gain insight into the neuronal and non-neuronal molecular changes during an IAV infection, we intranasally infected mice with an H1N1 virus and extracted the brain at different time points. Using single-nucleus RNA sequencing (snRNA-seq) of the hypothalamus, we identify transcriptional effects in all identified cell populations. The snRNA-seq data showed the most pronounced transcriptional response at 3 days past infection, with a strong downregulation of genes across all cell types. General immune processes were mainly impacted in microglia, the brain resident immune cells, where we found increased numbers of cells expressing pro-inflammatory gene networks. In addition, we found that most neuronal cell populations downregulated genes contributing to the energy homeostasis in mitochondria and protein translation in the cytosol, indicating potential reduced cellular and neuronal activity. This might be a preventive mechanism in neuronal cells to avoid intracellular viral replication and attack by phagocytosing cells. The change of microglia gene activity suggest that this is complemented by a shift in microglia activity to provide increased surveillance of their surroundings.


When you are ill, your behaviour changes. You sleep more, eat less and are less likely to go out and be active. This behavioural change is called the 'sickness response' and is believed to help the immune system fight infection. An area of the brain called the hypothalamus helps to regulate sleep and appetite. Previous research has shown that when humans are ill, the immune system sends signals to the hypothalamus, likely initiating the sickness response. However, it was not clear which brain cells in the hypothalamus are involved in the response and how long after infection the brain returns to its normal state. To better understand the sickness response, Lemcke et al. infected mice with influenza then extracted and analysed brain tissue at different timepoints. The experiments showed that the major changes to gene expression in the hypothalamus early during an influenza infection are not happening in neurons ­ the cells in the brain that transmit electrical signals and usually control behaviour. Instead, it is cells called glia ­ which provide support and immune protection to the neurons ­ that change during infection. The findings suggest that these cells prepare to protect the neurons from influenza should the virus enter the brain. Lemcke et al. also found that the brain takes a long time to go back to normal after an influenza infection. In infected mice, molecular changes in brain cells could be detected even after the influenza infection had been cleared from the respiratory system. In the future, these findings may help to explain why some people take longer than others to fully recover from viral infections such as influenza and aid development of medications that speed up recovery.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Animais , Camundongos , Humanos , Hipotálamo , Núcleo Solitário , Apetite
11.
Sleep ; 46(3)2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36562330

RESUMO

STUDY OBJECTIVES: Narcolepsy type 1 (NT1) is characterized by unstable sleep-wake and muscle tonus regulation during sleep. We characterized dream enactment and muscle activity during sleep in a cohort of post-H1N1 NT1 patients and their siblings, and analyzed whether clinical phenotypic characteristics and major risk factors are associated with increased muscle activity. METHODS: RBD symptoms and polysomnography m. tibialis anterior electromyographical signals [long (0.5-15 s); short (0.1-0.49 s)] were compared between 114 post-H1N1 NT1 patients and 89 non-narcoleptic siblings. Association sub-analyses with RBD symptoms, narcoleptic symptoms, CSF hypocretin-1 levels, and major risk factors [H1N1-(Pandemrix)-vaccination, HLA-DQB1*06:02-positivity] were performed. RESULTS: RBD symptoms, REM and NREM long muscle activity indices and REM short muscle activity index were significantly higher in NT1 patients than siblings (all p < 0.001). Patients with undetectable CSF hypocretin-1 levels (<40 pg/ml) had significantly more NREM periodic long muscle activity than patients with low but detectable levels (40-150 pg/ml) (p = 0.047). In siblings, REM and NREM sleep muscle activity indices were not associated with RBD symptoms, other narcolepsy symptoms, or HLA-DQB1*06:02-positivity. H1N1-(Pandemrix)-vaccination status did not predict muscle activity indices in patients or siblings. CONCLUSION: Increased REM and NREM muscle activity and more RBD symptoms is characteristic of NT1, and muscle activity severity is predicted by hypocretin deficiency severity but not by H1N1-(Pandemrix)-vaccination status. In the patients' non-narcoleptic siblings, neither RBD symptoms, core narcoleptic symptoms, nor the major NT1 risk factors is associated with muscle activity during sleep, hence not indicative of a phenotypic continuum.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Narcolepsia , Humanos , Orexinas , Irmãos , Narcolepsia/etiologia , Narcolepsia/diagnóstico , Sono , Músculo Esquelético
12.
ACS Pharmacol Transl Sci ; 6(10): 1492-1507, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37854625

RESUMO

Quality of life is often reduced in patients with sleep-wake disorders. Insomnia is commonly treated with benzodiazepines, despite their well-known side effects. Pellotine (1), a Lophophora alkaloid, has been reported to have short-acting sleep-inducing properties in humans. In this study, we set out to evaluate various in vitro and in vivo properties of 1. We demonstrate that 1 undergoes slow metabolism; e.g. in mouse liver microsomes 65% remained, and in human liver microsomes virtually no metabolism was observed after 4 h. In mouse liver microsomes, two phase I metabolites were identified: 7-desmethylpellotine and pellotine-N-oxide. In mice, the two diastereomers of pellotine-O-glucuronide were additionally identified as phase II metabolites. Furthermore, we demonstrated by DESI-MSI that 1 readily enters the central nervous system of rodents. Furthermore, radioligand-displacement assays showed that 1 is selective for the serotonergic system and in particular the serotonin (5-HT)1D, 5-HT6, and 5-HT7 receptors, where it binds with affinities in the nanomolar range (117, 170, and 394 nM, respectively). Additionally, 1 was functionally characterized at 5-HT6 and 5-HT7, where it was found to be an agonist at the former (EC50 = 94 nM, Emax = 32%) and an inverse agonist at the latter (EC50 = 291 nM, Emax = -98.6). Finally, we demonstrated that 1 dose-dependently decreases locomotion in mice, inhibits REM sleep, and promotes sleep fragmentation. Thus, we suggest that pellotine itself, and not an active metabolite, is responsible for the hypnotic effects and that these effects are possibly mediated through modulation of serotonergic receptors.

13.
Synapse ; 65(2): 136-45, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20560131

RESUMO

Depletion of central serotonin (5-HT) levels and dysfunction in serotonergic transmission are implicated in a variety of human CNS disorders. The mechanisms behind these serotonergic deficits have been widely studied using rodent models, but only to a limited extent in larger animal models. The pig is increasingly used as an experimental animal model especially in neuroscience research. Here, we present an approach for serotonin depletion in the pig brain. Central serotonin depletion in Danish Landrace pigs was achieved following 4 days treatment with para-chlorophenylalanine (pCPA). On day 5, tissue concentrations of 5-HT in seven distinct brain structures from one hemisphere: frontal and occipital cortex, striatum, hippocampus, cerebellum, rostral, and caudal brain stem, were determined. The other hemisphere was processed for receptor autoradiography. Treatments with 50 mg/kg and 100 mg/kg pCPA caused average decreases in 5-HT concentrations of 61% ± 14% and 66% ± 16%, respectively, and a substantial loss of 5-HT immunostaining was seen throughout the brain. The serotonin depletion significantly increased 5-HT4 receptor binding in nucleus accumbens, but did not alter 5-HT(1A) and 5-HT(2A) receptor or serotonin transporter binding in any brain region. In conclusion, 4 days treatment with pCPA effectively reduces 5-HT levels in the pig brain. Further, whereas several 5-HT markers did not change after the pCPA treatment, 5-HT4 receptors were consistently upregulated, indicating a greater susceptibility of this receptor to altered 5-HT levels. This porcine model of serotonin depletion will be useful in future studies of cerebral serotonergic dysfunction.


Assuntos
Encéfalo/metabolismo , Receptores 5-HT4 de Serotonina/metabolismo , Serotonina/metabolismo , Análise de Variância , Animais , Autorradiografia , Monoaminas Biogênicas/metabolismo , Encéfalo/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão/métodos , Citalopram/farmacocinética , Relação Dose-Resposta a Droga , Interações Medicamentosas , Feminino , Fenclonina/farmacologia , Lateralidade Funcional , Ligação Proteica/efeitos dos fármacos , Antagonistas da Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacocinética , Suínos , Distribuição Tecidual , Trítio/farmacocinética
14.
Sleep Med ; 85: 271-279, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34388506

RESUMO

STUDY OBJECTIVES: Evidence suggests a cell-mediated autoimmune pathogenesis for narcolepsy type 1 (NT1), but it is not clear whether the disease is associated with overall changes in T cell subsets. The increase in NT1 incidence after H1N1 vaccination campaign with the Pandemrix™ vaccine suggests that disease-relevant changes in the immune system following this vaccination were important. In this study, we aimed to investigate differentiated T cell subsets and levels of CD25 and CD69 activation markers in a cohort of mainly Pandemrix™-vaccinated NT1 patients compared with their vaccinated and unvaccinated siblings. METHODS: Peripheral blood mononuclear cells were collected in parallel and analysed with flow cytometry in 31 NT1 patients with disease onset after the 2009 influenza A (H1N1) pandemic and/or Pandemrix™ vaccination and 45 of their non-narcoleptic siblings (29/31 and 34/45 vaccinated, respectively). RESULTS: We observed significantly lower effector memory CD4+ T cell levels in NT1 patients compared to their siblings, when controlling for HLA DQB1∗06:02 and vaccination status. Further, within the sibling group, vaccination status significantly affected frequencies of central memory and CD8+CD25+ T cells, and HLA DQB1∗06:02 status significantly affected frequencies of CD4+CD25+ T cells. CONCLUSION: We confirm that NT1 is associated with lower levels of effector memory CD4+ T cells in peripheral blood. Importantly, this finding was only significant when controlling for vaccination and HLA status in both patients and controls. We thus demonstrate the importance of characterizing such factors (eg HLA and vaccination) when studying T cell subsets in NT1. This might explain earlier conflicting results.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Narcolepsia , Linfócitos T CD4-Positivos , Cadeias beta de HLA-DQ , Humanos , Influenza Humana/prevenção & controle , Leucócitos Mononucleares , Irmãos , Vacinação
15.
Brain Commun ; 3(2): fcab050, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33977264

RESUMO

The hypocretin/orexin system regulates arousal through central nervous system mechanisms and plays an important role in sleep, wakefulness and energy homeostasis. It is unclear whether hypocretin peptides are also present in blood due to difficulties in measuring reliable and reproducible levels of the peptides in blood samples. Lack of hypocretin signalling causes the sleep disorder narcolepsy type 1, and low concentration of cerebrospinal fluid hypocretin-1/orexin-A peptide is a hallmark of the disease. This measurement has high diagnostic value, but performing a lumbar puncture is not without discomfort and possible complications for the patient. A blood-based test to assess hypocretin-1 deficiency would therefore be of obvious benefit. We here demonstrate that heating plasma or serum samples to 65°C for 30 min at pH 8 significantly increases hypocretin-1 immunoreactivity enabling stable and reproducible measurement of hypocretin-1 in blood samples. Specificity of the signal was verified by high-performance liquid chromatography and by measuring blood samples from mice lacking hypocretin. Unspecific background signal in the assay was high. Using our method, we show that hypocretin-1 immunoreactivity in blood samples from narcolepsy type 1 patients does not differ from the levels detected in control samples. The data presented here suggest that hypocretin-1 is present in the blood stream in the low picograms per millilitres range and that peripheral hypocretin-1 concentrations are unchanged in narcolepsy type 1.

16.
Sleep ; 44(8)2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-33710305

RESUMO

STUDY OBJECTIVES: Narcolepsy type 1 (NT1) is associated with hypocretin neuron loss. However, there are still unexplained phenotypic NT1 features. We investigated the associations between clinical and sleep phenotypic characteristics, the NT1-associated P2RY11 polymorphism rs2305795, and P2Y11 protein levels in T lymphocytes in patients with NT1, their first-degree relatives and unrelated controls. METHODS: The P2RY11 SNP was genotyped in 100 patients (90/100 H1N1-(Pandemrix)-vaccinated), 119 related and 123 non-related controls. CD4 and CD8 T lymphocyte P2Y11 protein levels were quantified using flow cytometry in 167 patients and relatives. Symptoms and sleep recording parameters were also collected. RESULTS: We found an association between NT1 and the rs2305795 A allele (OR = 2, 95% CI (1.3, 3.0), p = 0.001). T lymphocyte P2Y11 protein levels were significantly lower in patients and relatives homozygous for the rs2305795 risk A allele (CD4: p = 0.012; CD8: p = 0.007). The nocturnal sleep fragmentation index was significantly negatively correlated with patients' P2Y11 protein levels (CD4: p = 0.004; CD8: p = 0.006). Mean MSLT sleep latency, REM-sleep latency, and core clinical symptoms were not associated with P2Y11 protein levels. CONCLUSIONS: We confirmed that the P2RY11 polymorphism rs2305795 is associated with NT1 also in a mainly H1N1-(Pandemrix)-vaccinated cohort. We demonstrated that homozygosity for the A risk allele is associated with lower P2Y11 protein levels. A high level of nocturnal sleep fragmentation was associated with low P2Y11 levels in patients. This suggests that P2Y11 has a previously unknown function in sleep-wake stabilization that affects the severity of NT1.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Narcolepsia , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza , Narcolepsia/genética , Sono/genética , Privação do Sono/genética , Linfócitos T
17.
Sleep ; 43(10)2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32227223

RESUMO

Narcolepsy type 1 is hypothesized to be an autoimmune disease targeting the hypocretin/orexin neurons in the hypothalamus. Ample genetic and epidemiological evidence points in the direction of a pathogenesis involving the immune system, but this is not considered proof of autoimmunity. In fact, it remains a matter of debate how to prove that a given disease is indeed an autoimmune disease. In this review, a set of commonly used criteria for autoimmunity is described and applied to narcolepsy type 1. In favor of the autoimmune hypothesis are data showing that in narcolepsy type 1 a specific adaptive immune response is directed to hypocretin/orexin neurons. Autoreactive T cells and autoantibodies have been detected in blood samples from patients, but it remains to be seen if these T cells or antibodies are in fact present in the hypothalamus. It is also unclear if the autoreactive T cells and/or autoantibodies can transfer the disease to healthy individuals or animals or if immunization with the proposed autoantigens can induce the disease in animal models. Most importantly, it is still controversial whether suppression of the autoimmune response can prevent disease progression. In conclusion, narcolepsy type 1 does still not fully meet the criteria for being classified as a genuine autoimmune disease, but more and more results are pointing in that direction.


Assuntos
Narcolepsia , Animais , Autoanticorpos , Autoantígenos , Autoimunidade , Humanos , Hipotálamo/metabolismo , Orexinas/metabolismo
18.
Sci Rep ; 10(1): 1148, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980690

RESUMO

To improve the understanding of the complex biological processes underlying the development of non-alcoholic steatohepatitis (NASH), a multi-omics approach combining bulk RNA-sequencing based transcriptomics, quantitative proteomics and single-cell RNA-sequencing was used to characterize tissue biopsies from histologically validated diet-induced obese (DIO) NASH mice compared to chow-fed controls. Bulk RNA-sequencing and proteomics showed a clear distinction between phenotypes and a good correspondence between mRNA and protein level regulations, apart from specific regulatory events discovered by each technology. Transcriptomics-based gene set enrichment analysis revealed changes associated with key clinical manifestations of NASH, including impaired lipid metabolism, increased extracellular matrix formation/remodeling and pro-inflammatory responses, whereas proteomics-based gene set enrichment analysis pinpointed metabolic pathway perturbations. Integration with single-cell RNA-sequencing data identified key regulated cell types involved in development of NASH demonstrating the cellular heterogeneity and complexity of NASH pathogenesis.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/etiologia , Proteômica/métodos , Transcriptoma , Animais , Cromatografia Líquida , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/genética , RNA/genética , RNA/isolamento & purificação , Alinhamento de Sequência , Análise de Sequência de RNA , Análise de Célula Única , Espectrometria de Massas em Tandem
19.
Nat Commun ; 11(1): 4458, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32895383

RESUMO

In rodent models of type 2 diabetes (T2D), sustained remission of hyperglycemia can be induced by a single intracerebroventricular (icv) injection of fibroblast growth factor 1 (FGF1), and the mediobasal hypothalamus (MBH) was recently implicated as the brain area responsible for this effect. To better understand the cellular response to FGF1 in the MBH, we sequenced >79,000 single-cell transcriptomes from the hypothalamus of diabetic Lepob/ob mice obtained on Days 1 and 5 after icv injection of either FGF1 or vehicle. A wide range of transcriptional responses to FGF1 was observed across diverse hypothalamic cell types, with glial cell types responding much more robustly than neurons at both time points. Tanycytes and ependymal cells were the most FGF1-responsive cell type at Day 1, but astrocytes and oligodendrocyte lineage cells subsequently became more responsive. Based on histochemical and ultrastructural evidence of enhanced cell-cell interactions between astrocytes and Agrp neurons (key components of the melanocortin system), we performed a series of studies showing that intact melanocortin signaling is required for the sustained antidiabetic action of FGF1. These data collectively suggest that hypothalamic glial cells are leading targets for the effects of FGF1 and that sustained diabetes remission is dependent on intact melanocortin signaling.


Assuntos
Diabetes Mellitus Experimental/dietoterapia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Fator 1 de Crescimento de Fibroblastos/administração & dosagem , Hipoglicemiantes/administração & dosagem , Hipotálamo/efeitos dos fármacos , Proteínas Recombinantes/administração & dosagem , Proteína Relacionada com Agouti/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Glicemia/análise , Comunicação Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/etiologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/patologia , Dieta Hiperlipídica/efeitos adversos , Sacarose Alimentar/administração & dosagem , Sacarose Alimentar/efeitos adversos , Humanos , Hipotálamo/citologia , Hipotálamo/patologia , Injeções Intraventriculares , Leptina/genética , Masculino , Melanocortinas/metabolismo , Hormônios Estimuladores de Melanócitos/administração & dosagem , Camundongos , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , RNA-Seq , Receptor Tipo 4 de Melanocortina/genética , Receptores de Melanocortina/antagonistas & inibidores , Receptores de Melanocortina/metabolismo , Indução de Remissão/métodos , Transdução de Sinais/efeitos dos fármacos , Análise de Célula Única , Técnicas Estereotáxicas , Transcriptoma/efeitos dos fármacos
20.
Drug Metab Dispos ; 37(3): 635-43, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19047468

RESUMO

Species differences occur in the brain concentrations of drugs, but the reasons for these differences are not yet apparent. This study was designed to compare brain uptake of three radiolabeled P-glycoprotein (P-gp) substrates across species using positron emission tomography. Brain concentrations and brain-to-plasma ratios were compared; [(11)C]verapamil in rats, guinea pigs, and monkeys; [(11)C](S)-(2-methoxy-5-(5-trifluoromethyltetrazol-1-yl)-phenylmethylamino)-2(S)-phenylpiperidine (GR205171) in rats, guinea pigs, monkeys, and humans; and [(18)F]altanserin in rats, minipigs, and humans. The fraction of the unbound radioligand in plasma was studied along with its metabolism. The effect of P-gp inhibition was investigated by administering cyclosporin A (CsA). Pronounced species differences were found in the brain and brain-to-plasma concentrations of [(11)C]verapamil, [(11)C]GR205171, and [(18)F]altanserin with higher brain distribution in humans, monkeys, and minipigs than in rats and guinea pigs. For example, the brain-to-plasma ratio of [(11)C]GR205171 was almost 9-fold higher in humans compared with rats. The species differences were still present after P-gp inhibition, although the increase in brain concentrations after P-gp inhibition was somewhat greater in rats than in the other species. Differences in plasma protein binding and metabolism did not explain the species-related differences. The findings are important for interpretation of brain drug delivery when extrapolating preclinical data to humans. Compounds found to be P-gp substrates in rodents are likely to also be substrates in higher species, but sufficient blood-brain barrier permeability may be retained in humans to allow the compound to act at intracerebral targets.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Barreira Hematoencefálica , Tomografia por Emissão de Pósitrons , Ensaio Radioligante , Animais , Proteínas Sanguíneas/metabolismo , Cobaias , Humanos , Macaca fascicularis , Ligação Proteica , Transporte Proteico , Ratos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA